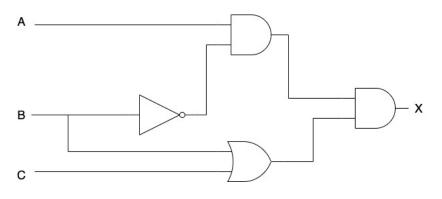
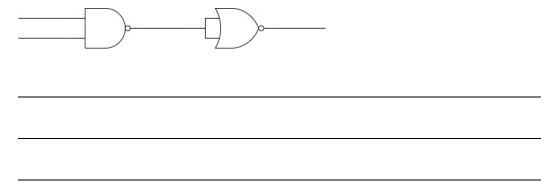

1 Complete the truth table for the following logic circuit

А			Working area	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		


2 a Write the following statement as a logic statement

X is 1 if A and B are on or if B is off and C is on

b Draw the logic circuit to represent your statement in part a.



3 a Write down the logic statement to represent the following logic circuit

А	В	С	Working area	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

b what single logic gate could replace the following logic circuit

4 A chemical process is monitored using a logic circuit. There are three inputs to the logic circuit representing the parameters being monitored in the chemical process. An alarm, X, will give an output value of I depending on certain conditions.

The following table describes the process conditions being monitored:

Parameter description	Parameter	Binary value	Description of condition
Reaction temperature	Т	0	Temperature > 120℃
		1	Temperature <= 120℃
Pressure of CO gas evolved	Ρ	0	Pressure > 2 bars
		1	Pressure <= 2 bars
Acid concentration	A	0	Acid concentration > 4 moles
		1	Acid concentration <= 4 moles

An alarm, X, will generate the value 1 if:

- eithertemperature > 120°C and acid concentration <= 4 moles
- ortemperature <= 120°C and gas pressure <= 2 bars
- oracid concentration > 4 moles and gas pressure <= 2bars

a Write the logic statement to represent this system

b Draw the logic circuit to represent this system.

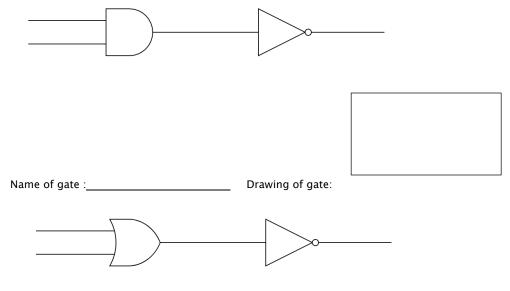
c Complete the truth table to represent this system

т	А	Р	Working area	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

5 Consider the logic statement:

X = (((A NAND B) NOR (B AND C)) OR C)

a Draw a logic circuit to match the given logic statement


All logic gates must have a maximum of two inputs. Do not attempt to simplify the logic statement

b Complete the truth table for the given logic statement

А			Working area	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

6 a identify the name and draw the single logic gate that can replace the given logic circuits.

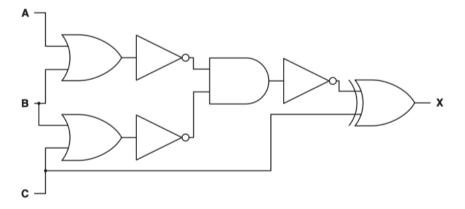
b complete the truth table for the given logic statement:

X = (((A OR C) AND (NOT A AND NOT C)) XOR B)

А		С	Working area	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

7 Consider the logic statement:

X = 1 if ((A is 1 NOR C is 1) AND (B is NOT 1 NOR C is 1)) OR (A is 1 AND B is 1)


a Draw a logic circuit to match the given logic statement. Each logic gate used must have a maximum of two inputs. Do not attempt to simplify the logic statement.

b Complete the truth table for the given logic statement

А			Working area	
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

8 Consider the given logic circuit:

a Redraw the logic circuit using only 4 logic gates. Each logic gate used must have a maximum of two inputs.

b complete the truth table for the given logic circuit

А	В	С	Working area	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

c Describe the purpose of a logic gate in a logic circuit

(190513)