
Section I
The Exam

AP® Computer Science A Exam
SECTION I: Multiple-Choice Questions

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO
SO.

At a Glance

Total Time
1 hour 30 minutes
Number of Questions
40
Percent of Total Score
50%
Writing Instrument
Pencil required

Instructions

Section I of this examination contains 40 multiple-choice questions.
Fill in only the ovals for numbers 1 through 40 on your answer sheet.

Indicate all of your answers to the multiple-choice questions on the
answer sheet. No credit will be given for anything written in this exam
booklet, but you may use the booklet for notes or scratch work. After
you have decided which of the suggested answers is best,
completely fill in the corresponding oval on the answer sheet. Give
only one answer to each question. If you change an answer, be sure

that the previous mark is erased completely. Here is a sample
question and answer.

Chicago is a
(A) state
(B) city
(C) country
(D) continent
(E) county

Sample Answer

Use your time effectively, working as quickly as you can without
losing accuracy. Do not spend too much time on any one question.
Go on to other questions and come back to the ones you have not
answered if you have time. It is not expected that everyone will know
the answers to all the multiple-choice questions.

About Guessing

Many candidates wonder whether or not to guess the answers to
questions about which they are not certain. Multiple-choice scores
are based on the number of questions answered correctly. Points are
not deducted for incorrect answers, and no points are awarded for
unanswered questions. Because points are not deducted for incorrect
answers, you are encouraged to answer all multiple-choice
questions. On any questions you do not know the answer to, you
should eliminate as many choices as you can, and then select the
best answer among the remaining choices.

Java Quick Reference

Class Constructors
and Methods

Explanation

String Class
String(String str) Constructs a new String object that

represents the same sequence of
characters as str

int length() Returns the number of characters in a
String object

String substring(int
from, int to)

Returns the substring beginning at index
from and ending at index to – 1

String substring(int
from)

Returns substring(from, length())

int indexOf(String
str)

Returns the index of the first occurrence of
str; returns –1 if not found

boolean equals(String
other)

Returns true if this is equal to other;
returns false otherwise

int compareTo(String
other)

Returns a value <0 if this is less than
other; returns zero if this is equal to
other; returns a value >0 if this is greater
than other

Integer Class
Integer(int value) Constructs a new Integer object that

represents the specified int value
Integer.MIN_VALUE The minimum value represented by an int

or Integer

Integer.MAX_VALUE The maximum value represented by an int
or Integer

int intValue() Returns the value of this Integer as an int

Double Class
Double(double value) Constructs a new Double object that

represents the specified double value
double doubleValue() Returns the value of this Double as a double

Math Class
static int abs(int x) Returns the absolute value of an int value
static double
abs(double x)

Returns the absolute value of a double
value

static double
pow(double base,
double exponent)

Returns the value of the first parameter
raised to the power of the second
parameter

static double
sqrt(double x)

Returns the positive square root of a double
value

static double
random()

Returns a double value greater than or
equal to 0.0 and less than 1.0

ArrayList Class
int size() Returns the number of elements in the list
boolean add(E obj) Appends obj to end of list; returns true

void add(int index, E
obj)

Inserts obj at position index (0 <= index
<= size), moving elements at position
index and higher to the right (adds 1 to their
indices) and adds 1 to size

E get(int index) Returns the element at position index in the
list

E set(int index, E
obj)

Replaces the element at position index with
obj; returns the element formerly at position
index

E remove(int index) Removes element from position index,
moving elements at position index + 1 and
higher to the left (subtracts 1 from their
indices) and subtracts 1 from size; returns
the element formerly at position index

Object Class
boolean equals(Object other)

String toString()

COMPUTER SCIENCE A
SECTION I

Time—1 hour and 30 minutes
Number of Questions—40

Percent of total exam grade—50%

Directions: Determine the answer to each of the following questions
or incomplete statements, using the available space for any
necessary scratchwork. Then decide which is the best of the choices
given and fill in the corresponding oval on the answer sheet. No credit
will be given for anything written in the examination booklet. Do not
spend too much time on any one problem.

Notes:
Assume that the classes listed in the Java Quick Reference have
been imported where appropriate.
Assume that declarations of variables and methods appear within
the context of an enclosing class.

Assume that method calls that are not prefixed with an object or
class name and are not shown within a complete class definition
appear within the context of an enclosing class.
Unless otherwise noted in the question, assume that parameters
in the method calls are not null and that methods are called only
when their preconditions are satisfied.

1. Which of the following will print a number less than 5?

 I. System.out.println (24 / 5 % 3 * 2);
 II. System.out.println (12 / 3 * 2 + 1);
III. System.out.println (1 + 4 % 3 * 2);

(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III

2. What output is generated by the following line of code:

System.out.println(“Simon says, \n\\\“insert phrase
here\”//”);

(A) Simon says, \n \\ insert phrase here//
(B) Simon says, \n \\ “insert phrase here”//
(C) Simon says, \n “insert phrase here”
(D) Simon says,

\“insert phrase here”/
(E) Simon says,

\“insert phrase here”//

3. Consider the following class with the numbers added for
reference:

public class Tree
{

private String name;
private double height;
private int rateOfGrowth;

Tree(String n, double h, int r)
{

name = n;
height = h;
rateOfGrowth = r;

}
Tree(double h, int r)
{

height = h;
rateOfGrowth = r;

}
Tree(String n)
{

name = n;
}
public String toString()
{

return name + “ can grow up to ” + height + “
feet high, at a rate of ” + rateOfGrowth + “
inches per year”;

}
}

Which of the following code excerpts in a client program would
cause an error?

(A) Tree elm = new Tree(“Elm”, 60, 36);
System.out.println(elm.toString());

(B) Tree riverBirch = new Tree(“River Birch”, 40.0,
(int)13.0);

System.out.println(riverBirch.toString());
(C) Tree redMaple = new Tree(60.0, 18);

System.out.println(redMaple.toString());
(D) Tree redwood = new Tree(“Redwood”, 300, 24.0);

System.out.println(redwood.toString());
(E) Tree sequoia = new Tree(“Sequoia”);

System.out.println(sequoia.toString());

Questions 4–5 refer to the class SalesRep.

public class SalesRep
{

private int idNum;
private String Name;
private int ytdSales;

SalesRep(int i, String n, int ytd)
{

idNum = i;
name = n;
ytdSales = ytd;

}

public int getYtdSales() {return ytdSales;}
}

4. A client method, computeBonus, will return a salesRep bonus
computed by multiplying his ytdSales by a percentage.

/** Precondition: SalesRep s has ytdSales >= 0
* @param s a SalesRep
* @param percentage represents what percent of the ytdSales
represents the bonus
* @return amount of bonus for the SalesRep (ytdSales * bonus)
*/

public static double computeBonus(SalesRep s, double
percentage)
{ /* missing code */ }

Which replacement for /* missing code */ is correct?

(A) return ytdSales() * percentage;
(B) return getYtdSales() * percentage;
(C) return s.ytdSales() * percentage;
(D) return s.getYtdSales() * percentage;
(E) return s.getYtdSales() * s.percentage;

5. An ArrayList was created to store a SalesRep object for every
salesperson in the XYZ company. Below is the declaration for
that ArrayList.

ArrayList<SalesRep> list1 = new ArrayList<SalesRep>();

The company decided to pay each SalesRep a bonus since the
company had a very profitable year. Management wishes to
project the total of that payout, but to do so, must first calculate
the total sales for the company by adding together the ytdSales
from each SalesRep. Which code excerpt will compute the
ytdSales for the company?

(A) double sum = 0;
for (ArrayList r : list1)
{ sum += r.get.getYtdSales(); }

(B) double sum = 0;
for (SalesRep r.get : list1)
{ sum += r.getYtdSales(); }

(C) double sum = 0;
for (SalesRep r : list1)
{ sum += r.getYtdSales(); }

(D) double sum = 0;
for (int i = 0; i < list1.size(); i++)
{ sum += SalesRep.get(i).getYtdSales();}

(E) double sum = 0;
for (int i = 0; i <= list1.size(); i++)
{ sum += list1.get(i).getYtdSales();}

6. Which of the following will print after the following code is
executed?

String str = new String(“superstar”);
System.out.print(str.substring (1, 3) + “ ”);
str.substring(1);
System.out.print(str.substring (1, 3) + “ ”);
str.substring(1);
System.out.print(str.substring (1, 3) + “ ”);

(A) su up pe
(B) up pe er
(C) sup upe per
(D) up up up
(E) A StringIndexOutOfBoundsException will occur

7. A chess game must take turns allowing black and white players
to move on the board. The player is indicated by the following
variable where true indicates black and false indicates white:

boolean isBlack;

At the end of each player’s turn, the variable isBlack must
alternate between true and false to indicate the next player’s
turn. Consider the following code examples, then determine
those that would accomplish this purpose.

I. isBlack = !isBlack;

II. if (!isBlack)
isBlack = true

 else
isBlack = false;

III. if (isBlack)
isBlack = false;

(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III

8. The following variables are declared, but their contents are
unknown.

String str1 = new String(“/*unknown value*/”);
String str2 = new String(“/*unknown value*/”);

Consider the following decision statements and determine the
statement that would fail to compare whether the value of str1 is
the same as the value of str2.

(A) if (str1 == str2)
(B) if (str1.equals(str2))
(C) if (str1.compareTo(str2) == 0)
(D) if

(str1.substring(0).equals(str2.substring(0,str2.length
())))

(E) if (str1.length() == str2.length() &&
str1.indexOf(str2) == 0)

9. Given the following boolean expression: !(p || (q || !r))

Which of the following conditions would result in an evaluation
as true?

(A) p = true q = true r = true
(B) p = true q = false r = true
(C) p = false q = true r = false
(D) p = false q = false r = false
(E) p = false q = false r = true

10. Which boolean expression and values demonstrate a short-
circuit evaluation?

(A) p || !(q && r) p = true q = true r = true
(B) p || (q && !r) p = false q = true r = false
(C) p || !(q || r) p = false q = true r = true
(D) p && q && r p = true q = true r = true
(E) p && !(q && r) p = true q = true r = true

11. Assume that p and q are boolean variables and have been
properly initialized.

! (!p || q) || ! (p || !q)

Which of the following best describe the result of evaluating the
expression above?

(A) true always
(B) false always
(C) true only if p is true
(D) true only if q is true
(E) true only if p and q have opposite truth values

12. What output is generated by the following code excerpt:

int count = 0;
String star = “*”;
for (int i = 1; i < 11; i++)

for (int j = 10; j > 1; j -= 2)
{

star += “**”;
count++;

}
System.out.print(“\n” + count + “ ” + star.length());

(A) 50 100
(B) 50 101
(C) 51 100
(D) 51 101
(E) 90 181

13. What output is generated by the following code excerpt:

for (int i = 1; i <= 5; i++)
{

for (int j = 1; j < i; j++)
{

System.out.print(“- ”);
}
for (int j = i; j <= 5; j++)
{

System.out.print(“* ”);
}
System.out.println();

}

(A) - - - - *
- - - * *
- - * * *
- * * * *
* * * * *

(B) * * * * *

- * * * *
- - * * *
- - - * *
- - - - *

(C) * - - - -
* * - - -
* * * - -
* * * * -
* * * * *

(D) * * * * *
* * * * -
* * * - -
* * - - -
* - - - -

(E) - - - - -
- - - - *
- - - * *
- - * * *
- * * * *

14. Consider the following code segments and determine those that
would produce the same output.

I. int sum = 0;
 for (int i = 1; i < 3; i++)
 {

sum += 2 * i + 1;
 }
 System.out.println(sum);

II. int sum = 0;
 for (int i = 1; i <= 5; i++)
 {

if (i % 2 == 1)
sum += i;

 }

 System.out.println(sum);
III. int i = 5;
 int sum = i;
 while (i > 1)
 {

i -= 2;
sum += i;

 }
 System.out.println(sum);

(A) I and II only
(B) I and III only
(C) II and III only
(D) I, II and III
(E) All three outputs are different.

15. Consider the following code segment:

/**
* @param number is initialized with a positive integer value
* @return the sum of odd integers between 1 and number
*/

public static int sumOdds(int number)
{

int sum = 0;
for (/* missing code */)
{

sum += k;
}
return sum;

}

Which of the following replacements for /* missing code */ will
satisfy the conditions of the method?

I. int k = 1; k <= number; k++

II. int k = 1; k <= number; k += 2
III. int k = number; k >= 1; k -= 2

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

16. Using the following method to find the index of the largest value
in an array. Choose the replacement(s) for /* some code */ that
will accomplish the task as described.

/** Precondition: arr is initialized with integer values and is not
empty
* Integer.MIN_VALUE is a static constant containing the value –
2147483648
* @param arr the array to be processed
* @return the location of the largest value in the array; if
* the largest value is stored in more than one element,
return the
* first location within the array where the element is
located
*/

Example: int arr[] = {5, -3, 2, 5}; The method should
return 0.

public static int findMaximumIndex(int[] arr)
{

/* some code */
}

I int max = Integer.MIN_VALUE;
int loc = -1;

int i = 0;
while (i < arr.length)
{

if (arr[i] > max)
{

max = arr[i];
loc = i;

}
i++;

}
return loc;

II int max = arr[arr.length – 1];
int loc = arr.length - 1;
int i = arr.length - 1;
while (i >= 0)
{

if (arr[i] > max)
{

max = arr[i];
loc = i;

}
i––;

}
return loc;

III int i = 0;
int loc = 0;
int max = arr[loc];
while (i < arr.length)
{

if (arr[i] > max)
{

max = arr[i];
loc = i;

}
i++;

}
return loc;

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

17. The values of the static fields in the Integer class named
MIN_VALUE and MAX_VALUE are constants containing the values
-2147483648 and 2147483647 respectively. Determine the
statement(s) below that will throw a compiler error.

(A) int min = Integer.MIN_VALUE;
(B) int min = Integer.MIN_VALUE - 1;
(C) int num = Integer.MIN_VALUE + Integer.MAX_VALUE;
(D) int max = 2147483648;
(E) All of the statements above

18. What is the output after the following code is executed:

int num = 5;
System.out.print(“” + half(num) + num);

public static double half(int n)
{

return n/2;
}

(A) 2.05
(B) 2.5
(C) 7.0
(D) 7.5
(E) Nothing will print, as an error will be thrown.

19. Consider the following class declaration that is intended to
represent a rectangle.

public class MyRectangle
{

private int width;
private int height;
private int perimeter;

MyRectangle(int w, int h)
{

width = w;
height = h;
int perimeter = 2 * (width + height);

}

public double getPerimeter()
{

return perimeter;
}

}

What is the output after the following code is executed:

MyRectangle rect = new MyRectangle(2, 3);
System.out.print(rect.getPerimeter());

(A) 0
(B) 0.0
(C) 10
(D) 10.0
(E) None of the above; an error will be thrown.

Questions 20–22 refer to the following incomplete class declaration
that is intended to represent a car.

public class Car
{

private String model;
private int numDoors;
private boolean isFourWheelDrive;
private int mpg;

/**
* Constructs a car
*/
Car()
{

}

/**
* Constructs a car
* @param model
* @param numDoors
* @param isFourWheelDrive
* @param mpg
*/
Car(String model, int numDoors, boolean
isFourWheelDrive, int mpg)
{

/* Implementation not shown */
}

/**
* Compute the miles per gallon (milesDriven/gallons)
* and stores the result in mpg, rounded to the nearest gallon
* >= 0.5 would round up, < 0.5 would round down
* @param milesDriven
* @param gallons
*/
public void setMpg(int milesDriven, double gallons)
{

/* Implementation not shown */
}

/**
* Updates the model of the car

* @param model
*/
public void setModel(String model)
{

model = model;
}

/**
*
* @ return model
*/
public String getModel()
{

return model;
}
/**
* Updates the number of doors on the car
* @param numDoors
*/
public void setnumDoors(int numDoors)
{

/* Implementation not shown */
}

/**
* Updates isFourWheelDrive true if the car has four-wheel
drive, false if not
* @param isFourWheelDrive
*/
public void setIsFourWheelDrive (boolean
isFourWheelDrive)
{

/* Implementation not shown */
}

/**

* Returns the values stored in the object
*/
public String toString()
{

return “Model: ” + model + “ is 4-wheel drive: ”
+ isFourWheelDrive;

}
}

20. The programmer wishes to add an additional constructor. Which
of the following would be invalid as a constructor?

(A) Car(String model)
(B) Car(String model, int mpg, boolean isFourWheelDrive)
(C) Car(String model, int numDoors)
(D) Car(String model, int mpg, boolean isFourWheelDrive,

int numDoors)
(E) Car(String model, int numDoors, boolean

isFourWheelDrive, int milesDriven, double gallons)

21. The following code is in a client program.

Car fordTruck = new Car();

fordTruck.setModel(“Tacoma”);

if (fordTruck.getModel().equals(“Tacoma”))
fordTruck.setIsFourWheelDrive(true);

System.out.println(fordTruck);

What will be output by the program?

(A) Model: Tacoma is 4-wheel drive: true
(B) Model: Tacoma is 4-wheel drive: false
(C) Model: null is 4-wheel drive: true
(D) Model: null is 4-wheel drive: false

(E) A NullPointerException will be thrown

22. Which of the following can replace /* Implementation not shown
*/ in the setMpg method?

(A) mpg = milesDriven / gallons;
(B) mpg = milesDriven / gallons + 0.5;
(C) mpg = milesDriven / (int) gallons + 0.5;
(D) mpg = (int) (milesDriven / gallons) + 0.5;
(E) mpg = (int) (milesDriven / gallons + 0.5);

Questions 23–25 refer to the following class declarations.

public class Bee
{

private int lifeSpan;
private String name;

Bee(String n, int life)
{

lifeSpan = life;
name = n;

}

public String getName()
{

return name;
}

public String toString()
{

return “ The ” + name + “s live ” + lifeSpan + “
months.”;

}
}

public class Queen extends Bee
{

private int eggsPerDay;

Queen(String name, int months, int eggs)
{

super(name, months);
eggsPerDay = eggs;

}

public String toString()
{

return “ The queen” + “ lays ” + eggsPerDay + “
eggs.”;

}
}

23. What is output after the following lines of code are executed in a
client program?

Bee bee1 = new Queen(“honey bee”, 6, 2000);
System.out.println(bee1.toString());

(A) The queen lays 2000 eggs.
(B) The honey bee lays 2000 eggs.
(C) The honey bees live 6 months.
(D) The honey bees live 6 months. The queen lays 2000 eggs.
(E) An error will be thrown because of mismatched data types.

24. The programmer wishes to include an accessor method for the
field called name. In which class should this method be included?

(A) Only in the Bee class.
(B) Only in the Queen class.
(C) It could be included in either the Bee class or the Queen class.
(D) It should be included in both classes.
(E) The method should not be included in either class because

the data is private.

25. Only queen bees lay eggs that hatch into productive bees for the
colony. The other two types of bees in a colony are drone (male)
and worker (female) bees. What information would be most
helpful to determine the best design for a class implementation
for drones and worker bees?

(A) Whether the drones and workers have distinctly different
lifespans than queens

(B) Whether there are many more drones and workers than
queens

(C) Whether there are more drones than workers (or the reverse)
(D) What data needs to be included to accurately represent the

state and behavior of drones and workers
(E) All the above

26. A program passes an array to a method in the same class to
create multiples of 5. Determine the output of the following code.

double arr[];
arr = new double[5];
multOf5(arr);
for (int i = 0; i < arr.length; i++)

System.out.print(arr[i] + “ ”);

public static void multOf5(double a[])
{

for (int i = 0; i < a.length; i++)
a[i] = i * 5;

}

(A) 0.0 5.0 10.0 15.0 20.0
(B) 0.0 0.0 0.0 0.0 0.0 0.0
(C) 0.0 5.0 10.0 15.0 20.0 25.0
(D) An error will occur because of a type mismatch.
(E) An error will occur because the array was not initialized.

27. Consider the following method:

public static int[] op(int[][] matrix, int m)
{

int[] result = new int[matrix.length];
for (int j = 0; j < matrix.length; j++)
{

result[j] = matrix[m][j] - matrix[j][m];
}
return result;

}

The following code segment appears in the same class:

int mat[][] = {{1, 2, 3, 4}, {1, 3, 5, 7}, {2, 4, 6, 8},
{4, 3, 2, 1}};
int[] arr = op(mat, 3);

Which of the following represents the contents of arr as a result
of the code segment?

(A) {0, -4, -6, 0}
(B) {0, 4, 6, 0}
(C) {8, 10, 10, 2}
(D) {2, 4, 6, 8}
(E) {3, 5, 6, 2}

28. A programmer wishes to declare and initialize an ArrayList with
random integers between 1 and 100. Choose the code that can
replace /* missing code */ to accomplish the task.

ArrayList<Integer> list2= new ArrayList<Integer>();
for (int i = 0; i < 1000; i++)
{

/* missing code */
}

(A) list2.add((Math.random() * 100 + 1));
(B) list2.add((int)(Math.random() * 99 + 0.5));
(C) list2.add((int)(Math.random() * 100 + 0.5));
(D) list2.add((int)(Math.random() * 100 + 1));
(E) list2.add((Integer)(Math.random() * 100 + 0.5));

29. What is printed after the following code is executed?

ArrayList<String> list1 = new ArrayList<String>();
list1.add(“A”);
list1.add(“B”);
list1.add(“C”);
list1.add(“D”);
list1.add(“E”);

for (int k = 0; k < list1.size(); k += 2)
{

list1.remove(k);
}
for (int k = 1; k <= 3; k++)
{

list1.add(1, “*”);
}
for (String word : list1)
{

System.out.print(word + “ ”);
}

(A) B * * * C
(B) B * * * D
(C) B * * * E
(D) B * C * E
(E) B * * * C E

30. What is the result of calling mystery(5)?

public static int mystery(int n)
{

if (n == 1)
return 1;

else if (n == 2)
return 2;

else
return n + mystery(n - 1) + mystery(n - 2);

}

(A) 13
(B) 15
(C) 17
(D) 19
(E) 23

31. What is the result of calling mystery(“PLANT”);

public static void mystery(String s)
{

int i = 1;
if (s.length() > 1)
{

String temp = s.substring(s.length() - i);
System.out.println(temp);
i++;
mystery(temp);

}
}

(A) T
NT
ANT
LANT
PLANT

(B) LANT
ANT
NT
T

(C) LANT
ANT
NT

(D) T
(E) PLANT

Questions 32–33 refers to the following class declarations, which are
intended to represent performances of plays.

public class Performance
{

private String name;
private String season;
private int year;

Performance(String n, String s, int y)
{

name = n;
season = s;
year = y;

}
public String toString()
{

return name + “ will be performed in ” + season
+ “ of ” + year;

}
}

public class Play
{

private Performance performance;
private String mainCharacter;
private String starringActor;

Play(String n, String s, int y, String m, String
star)
{

Performance p = new Performance(n, s, y);
performance = p;

mainCharacter = m;
starringActor = star;

}

public String getMainCharacter()
{

return mainCharacter;
}

public String getStarringActor()
{

return starringActor;
}
public String toString()
{

return performance + “ with ” + starringActor +
“ as ” + mainCharacter;

}
}

32. What is the output after the following lines of code are executed
in a client program?

Play p1 = new Play(“Beauty and the Beast”, “Winter”, 2023,
“Belle”, “Kira”);

Play p2 = new Play(“Peter Pan”, “Spring”, 2023, “Peter”,
“Charlie”);

Play p3 = new Play(“Goldilocks and the Three Bears”,
“Summer”, 2023, “Goldilocks”, “Sophia”);

Play[] schedule = {p1, p2, p3};
System.out.println(schedule[1]);

(A) Charlie as Peter
(B) Performance@7c53a9eb with Charlie as Peter
(C) Peter Pan will be performed in Spring of 2023
(D) Peter Pan will be performed in Spring of 2023 with

Charlie as Peter
(E) An error will be thrown.

33. Code is to be added to the same client program to build the
following ArrayList of actors.

ArrayList<String> actors = new ArrayList<String>();

The starringActor(s) found in the schedule array (in the
previous problem) will be stored in the actors ArrayList. Which
of the following will properly add every the starringActor to the
ArrayList?

(A) for (Play p : schedule)
actors.add(p.starringActor);

(B) for (Play p : schedule)
actors.add(p.getStarringActor());

(C) for (Performance p : schedule)
actors.add(p.getStarringActor());

(D) for (int j = 0; j < schedule.length; j++)
actors.add(schedule[j].starringActor);

(E) for (int j = 0; j < schedule.length; j++)
actors.add(schedule.get[j].getStarringActor());

34. Consider the following classes:

public class Flower
{

private int height;

public Flower() /* constructor without parameters */
{

height = 0;
}
public String toString()
{

return “height = ” + height;
}

}

public class Daffodil extends Flower
{

/* accessor and mutator methods not shown */
}

Which of the following declarations is valid?

I. Flower lily = new Flower();
II. Flower daffy = new Daffodil();
III. Daffodil daffo = new Daffodil();

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II and III

35. A binary search is used to find a target value in an array of 4000
elements, sorted in ascending order. Assuming a target value is
in the array, what is the maximum number of searches that will
occur to locate the target value?

(A) 11
(B) 12
(C) 15
(D) 40
(E) 2000

Questions 36–37 refer to the following sort method.

public static void sort(int arr[])
{

int i;
int num;

int j;
for (i = 1; i < arr.length; i++) /* outer loop
*/
{

num = arr[i];
j = i - 1;
while (j >= 0 && arr[j] > num) /* inner loop */
{

arr[j + 1] = arr[j];
j = j - 1;

}
arr[j + 1] = num;

}
}

36. If sort is called with an array of n elements, what is the
maximum number of times the loop indicated by /* outer loop */
will be executed?

(A) n
(B) n / 2
(C) n – 1
(D) n + 1

(E) 2n

37. If sort is called with an array of n elements, on any given pass
through /* outer loop */, what is the least number of times the
loop indicated by /* inner loop */ will be executed?

(A) 0
(B) 1
(C) n / 2
(D) n – 2
(E) n – 1

38. What changes to mat are implemented by the following code
excerpt?

int for (int a = 0; a < mat.length; a++)
{

temp = mat[a][0];
for (int b = 1; b < mat[0].length; b++)
{

mat[a][b – 1] = mat[a][b];
}
mat[a][mat[0].length – 1] = temp;

}

(A) Every two columns are flipped. If there are an odd number of
columns, there is no change to the last column.

(B) Every two rows are flipped. If there are an odd number of
rows, there is no change to the last row.

(C) All columns are shifted left, and elements from the first
column are moved to the last column.

(D) All rows are shifted upward, and elements from the first row
are moved to the bottom row.

(E) An outOfBounds error is thrown.

Questions 39–40 refer to the following class declarations.

public class Sport
{

private String season;
private int year;

Sport(String s, int y)
{

season = s;
year = y;

}

public String toString()
{

return season + “ ” + year;
}

}
public class Baseball extends Sport
{

private int numPositions;

Baseball(String s, int y)
{

super(s, y);
numPositions = 10;

}
}

39. The programmer wishes to store the following objects into an
ArrayList.

Baseball b1 = new Baseball(“Spring”, 2022);
Baseball b2 = new Baseball(“Summer”, 2022);
Baseball b3 = new Baseball(“Summer”, 2023);
Baseball b4 = new Baseball(“Summer”, 2024);
Sport s1 = new Sport(“Winter”, 100);

Which of the following is a valid declaration for the ArrayList?

(A) ArrayList<Sport> sports = new ArrayList<Sport>();
(B) ArrayList<Sport> sports = new ArrayList<Baseball>();
(C) ArrayList<Baseball> sports = new ArrayList<Sport>();
(D) ArrayList<Baseball> sports = new ArrayList<Baseball>();
(E) These objects cannot be combined into a single ArrayList.

40. Which of the code excerpts will remove all objects from the
ArrayList with a season designated as “Summer”?

I. for (int i = 0; i < sports.size(); i++)
 {

if (sports.get(i).getSeason().equals(“Summer”))
sports.remove(i);

 }
II. int i = 0;
 for (Sport a: sports)
 {
 if (a.getSeason().equals(“Summer”))

a.remove(i);
 i++;
 }

III. for (int i = sports.size() - 1; i >= 0; i––)
 {

if (sports.get(i).getSeason().equals(“Summer”))
sports.remove(i);

 }

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

END OF SECTION I
IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK

YOUR WORK ON THIS SECTION.

DO NOT GO ON TO SECTION II UNTIL YOU ARE TOLD TO DO
SO.

Section II

COMPUTER SCIENCE A
SECTION II

Time—1 hour and 30 minutes
Number of Questions—4

Percent of Total Grade—50%

Directions: SHOW ALL YOUR WORK. REMEMBER THAT
PROGRAM SEGMENTS ARE TO BE WRITTEN IN JAVA™.

Notes:

Assume that the classes listed in the Java Quick Reference have
been imported where appropriate.
Unless otherwise noted in the question, assume that parameters
in method calls are not null and that methods are called only
when their preconditions are satisfied.
In writing solutions for each question, you may use any of the
accessible methods that are listed in classes defined in that
question. Writing significant amounts of code that can be
replaced by a call to one of these methods will not receive full
credit.

FREE-RESPONSE QUESTIONS

1. This question involves writing methods for a PigLatin class. The
PigLatin class stores a phrase in an instance variable and has
three methods. The first will detect whether the parameter sent
is a vowel, the second returns a word converted into pig latin,
and the third will convert a phrase into pig latin.

public class PigLatin
{

private String phrase;

/** Constructs a new PigLatin object */
public PigLatin(String phrase)
{ this.phrase = phrase; }

/** Returns true if the letter sent is a vowel: a, e, i, o, or u
* If the letter is not a vowel returns false: “y” is not
considered a vowel
* Preconditions: letter will not be null and will be exactly
one character long,
* letter will not be a space; letter will be
lowercase
* Postconditions: letter is not modified,
* only true or false, as explained above, is
returned
*/
public boolean isLetterAVowel(String letter)
{ /* to be implemented in part (a) */ }

/** Returns a word converted to pig latin
* Precondition: word.length > 0; all letters will be
lowercase
* all words with word.length == 1 will be a
single vowel
* Postcondition: the parameter word is not modified
*/
public String convertWord(String word)
{ /* to be implemented in part (b) */ }

/** Returns the instance field phrase converted to pig latin
* Returns the empty string if the parameter word is empty
or null

* Precondition: word may be null or any length
* the last character of the phrase will be a letter,
not a space
* all characters will be lowercase
* Postcondition: phrase is not modified, returns phrase
converted to pig latin
*/

public String convertPhrase()
{ /* to be implemented in part (c) */ }

}

(a) Write the PigLatin method isLetterAVowel, which will return
true if the parameter letter is a vowel (a, e, i, o, or u), and
otherwise return false. The parameter letter will not be null or
the empty string and will be exactly one character long. The
value of the parameter will be a letter in lowercase.

Code segments Value returned
isLetterAVowel(“a”); true

isLetterAVowel(“e”); true

isLetterAVowel(“u”); true

isLetterAVowel(“b”); false

isLetterAVowel(“y”); false

Class information for this question

public class PigLatin

private String phrase;
public PigLatin(String phrase)

public boolean isLetterAVowel(String letter)
public String convertWord(String word)
public String convertPhrase()

The PigLatin class includes the method isLetterAVowel.

Complete method isLetterAVowel below.

/** Returns true if the letter sent is a vowel: a, e, i, o, or u
* If the letter is not a vowel returns false: “y” is not considered a
vowel
* Preconditions: letter will not be null and will be exactly one
character long,
* letter will not be a space; letter will be lowercase
* Postconditions: letter is not modified
* only true or false, as explained above, is
returned
*/
public boolean isLetterAVowel(String letter)

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

(b) Write the PigLatin method convertWord, which will return a word
converted to pig latin.

There will be three rules used to convert each word to pig latin:

– If word starts with a vowel, add the word “way” at the end of
the word. “apple” would become “appleway”, “a” would
become “away”

– If word starts with a consonant and a vowel, move the
consonant to the end of the word and add “ay”. “dog” would
become “ogday”, “house” would become “ousehay”

– If word starts with two consonants, move both consonants to
the end of the word and add “ay”. “charge” would become
“argechay”, “sled” would become “edslay”

You must use isLetterAVowel appropriately to receive full credit.

Code segments Value returned
convertWord(“ant”); “antway”

convertWord(“cat”); “atcay”

convertWord(“clone”); “oneclay”

Class information for this question

public class PigLatin

private String phrase;
public PigLatin(String phrase)
public boolean isLetterAVowel(String letter)
public String convertWord(String word)
public String convertPhrase()

The PigLatin class includes the method convertWord.

Complete method convertWord below.

/** Returns a word converted to pig latin
* Precondition: word.length > 0; all letters will be lowercase
* all words with word.length == 1 will be a single
vowel
* Postcondition: the parameter word is not modified
* returns word converted to
* pig latin
*/
public String convertWord(String word)

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

(c) Write the PigLatin method convertPhrase, which will return the
instance field phrase converted to pig latin. If phrase is empty or
null, it will return the empty string. All characters in phrase will
be lowercase letters.

You must use convertWord appropriately to receive full credit.

Code segments Value returned
convertPhrase(“the cat is
sleepy”);

“ethay atcay isway
eepyslay”

convertPhrase(“where are you”); “erewhay areway ouyay”

convertPhrase(null); “ ”

convertPhrase(“”); “ ”

Class information for this question

public class PigLatin

private String phrase;
public PigLatin(String phrase)
public boolean isLetterAVowel(String letter)
public String convertWord(String word)
public String convertPhrase()

The PigLatin class includes the method convertPhrase.

Complete method convertPhrase below.

/** Returns the instance field phrase converted to pig latin
* Returns the empty string if the parameter word is empty or
null
* Precondition: word may be null or any length
* the last character of the phrase will be a letter, not
a space
* all characters will be lowercase
* Postcondition: phrase is not modified, returns phrase
converted to pig latin
*/
public String convertPhrase()

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

This question involves writing a subclass for the FrequentFlyerMember
class. This class holds information about frequent flyer members,
including their names, account numbers, lifetime miles, and status
levels.

2. The FrequentFlyerMember class definition is shown below.

public class FrequentFlyerMember
{

private int acctNumber;
private String flyerName;
private int lifetimeMiles;
private int statusLevel;

FrequentFlyerMember(int n, String name, int miles)
{

acctNumber = n;
flyerName = name;
lifetimeMiles = miles;
statusLevel = 1;

}

//* Adds miles to lifetimeMiles */
public void addMiles(int miles)
{

lifetimeMiles += miles;
}

//* Changes the status level */
public void setStatusLevel(int level)
{

statusLevel = level;
}

//* Prints selected status information */
public String getStatusInfo()
{

return acctNumber + “ ” + flyerName + “ level ”
+ statusLevel;

}

//* other methods may exist but are not shown */
}

You will write the class PremierMember, which is a subclass of
FrequentFlyerMember.

A PremierMember has a premierClubMembership field represented
by a boolean data type. It should be set to true. This flyer is also
entitled to two freeBags which should be represented by an int
field. The member will also have another String field named
otherFrequentFlyerMember to store the name of any other
frequent flyer memberships the flyer may be entitled to. These
fields should be initialized in the constructor.

Information about the flyer’s number, name, lifetime miles, and
status level should be maintained and managed in the
FrequentFlyerMember class.

Statement Class Specifications
or Print

FrequentFlyerMember smith1 = new
FrequentFlyerMember(14256, “Luke Smith”,
1000);

Class Specification:

smith1 is a
FrequentFlyerMember
 number: 14256
 name: Luke Smith
 miles: 1000
 statusLevel: 1

smith1.addMiles(3025); Class Specification
change:

smith1

 miles:3025

smith1.setStatusLevel(2); Class Specification
change:

smith1
 statusLevel: 2

System.out.println(smith1.getStatusInfo()); Printed:

 14256 Luke Smith
level 2

PremierMember jones1 = new PremierMember

(97531, “Marcie Jones”, “British Airways”,
9000);

Class Specification:

jones1 is a
PremierMember
 number: 97531
 name: Marcie Jones
 miles: 9000
 statusLevel: 1

jones1.addMiles(10000); Class Specification
change:

jones1
 miles: 19000

jones1.setStatusLevel(5); Class Specification
change:

jones1
 statusLevel: 5

System.out.println(jones1.getStatusInfo()); Printed:

 97531 Marcie Jones
level 5 also a

member of British
Airways

Write the complete PremierMember class. Your implementation
must meet all specifications and conform to the examples
shown in the preceding table.

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

3. A factorpair is constructed from two (possibly non-distinct)
numbers whose product is a given number. The Factors class
constructs and stores all the given FactorPair objects of a
number into an ArrayList with no duplicate pairs. The
constructor uses a method: buildArrayList to create the
FactorPair objects and create the ArrayList. The class utilizes a
method findMostPairs to compare the number of FactorPair
objects between two different numbers and return the number
with the most FactorPair objects. If both numbers have the
same number of FactorPair objects, the method returns -1. The
toString method will print all the FactorPair objects within an
ArrayList. You will write three methods of the Factors class:
buildArrayList, findMostPairs, and toString.

public class FactorPair
{

/** factor1 and factor2 represent two factors of a number
*/

private int factor1;
private int factor2;

FactorPair(int f1, int f2)
{

factor1 = f1;
factor2 = f2;

}

/* returns the first factor of a pair */
public int getFactor1()
{ return factor1; }

/* returns the second factor of a pair */
public int getFactor2()
{ return factor2; }

}

public class Factors
{

private int number;
private ArrayList<FactorPair> pairs = new
ArrayList<FactorPair>();

Factors(int n)
{

number = n;
pairs = buildArrayList(n);

}

/** Builds an ArrayList of all FactorPair objects of number
/* Precondition: n > 0
* Postcondition: the ArrayList will contain all FactorPair
objects for number
* the ArrayList will not contain duplicate
FactorPair objects
* return the ArrayList of FactorPair objects
*/
public ArrayList<FactorPair> buildArrayList(int n)

{ /* to be implemented in part (a) }

/* Given two numbers as parameters, the method will return the
* number with the most FactorPair objects
* Precondition: n1 > 0, n2 > 0
* Postcondition: The numbers are not modified
* return the number with the most FactorPair objects; if
tied, –1 will be returned
*/
public int findMostPairs(Factors f)

{ /* to be implemented in part (b) }

/** Returns a string containing all the FactorPair
objects in the ArrayList */

public String toString()
{ /* to be implemented in part (c) */ }

/* other methods may be implemented but not shown */
}

(a) Write the Factor method buildArrayList, which will construct
the ArrayList pairs for the number provided as the parameter.

Code segments FactorPairs generated and added to the
ArrayList pairs

buildArrayList(24); pairs:

factor1: 1 factor2: 24

factor1: 2 factor2: 12

Factor1: 3 factor2: 8

factor1: 4 factor2: 6

buildArrayList(45); pairs:

factor1: 1 factor2: 45

factor1: 3 factor2: 15

factor1: 5 factor2: 9

buildArrayList(17); pairs:

factor1: 1 factor2: 17

buildArrayList(20); pairs:

factor1: 1 factor2: 20

factor1: 2 factor2: 10

factor1: 4 factor2: 5

Class information for this question

public class Factors

private int number;
private ArrayList<FactorPair> pairs = new
ArrayList<FactorPair>();
Factors(int n)
public ArrayList<FactorPair> buildArrayList(int
n)
public int findMostPairs(Factors f) {
public String toString() {

public class FactorPair

private int factor1;
private int factor2;
FactorPair(int f1, int f2)
public int getFactor1()
public int getFactor2()

The Factor class includes the method buildArrayList.

Complete method buildArrayList below.

/** Returns an ArrayList of all FactorPair objects of number
/* Precondition: n > 0
* Postcondition: the ArrayList will contain all FactorPair objects
of n
* the ArrayList will not contain duplicate FactorPair
objects */
public ArrayList<FactorPair> buildArrayList(int n)

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

(b) The Factor class includes the method findMostPairs.

Given two numbers as parameters, the method will evaluate the
number of FactorPair objects for each number and return the
number that has the most FactorPair objects. If the number of
FactorPair objects is the same for both numbers, -1 will be
returned.

You must use buildArrayList appropriately to receive full credit.

Code segments Value returned
(examples of the
contents of the

ArrayList are shown
in part (a))

Factors f1 = new Factors(20);

Factors f2 = new Factors(24);

System.out.println(f1.findMostPairs(f2));

24

Factors f1 = new Factors(20);

Factors f2 = new Factors(45);

System.out.println(f1.findMostPairs(f2));

-1

Factors f1 = new Factors(17);

Factors f2 = new Factors(45);

System.out.println(f1.findMostPairs(f2));

45

Class information for this question

public class Factors

private int number;
private ArrayList<FactorPair> pairs = new
ArrayList<FactorPair>();
Factors(int n)
public ArrayList<FactorPair> buildArrayList(int
n)
public int findMostPairs(Factors f) {
public String toString() {

public class FactorPair
private int factor1;
private int factor2;
FactorPair(int f1, int f2)

public int getFactor1()
public int getFactor2()

Complete method findMostPairs below.

/** Returns the number with the most factored pairs; if tied, –1
will be returned
* Precondition: n1 > 0, n2 > 0
* Postcondition: The numbers are not modified
*/
public int findMostPairs(Factors f)

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

(c) The Factor class includes the method toString. This method
will return a string containing containing the factors of each
FactorPair object in the ArrayList using the format shown
below.

Code segments Value returned
Factors f1 = new Factors(24);

System.out.println(f1.toString());

(1 24) (2 12) (3 8) (4 6)

Factors f2 = new Factors(17);

System.out.println(f2.toString());

(1 17)

Factors f3 = new Factors(20);

System.out.println(f3.toString());

(1 20) (2 10) (4 5)

Class information for this question

public class Factors

private int number;
private ArrayList<FactorPair> pairs = new
ArrayList<FactorPair>();
Factors(int n)
public ArrayList<FactorPair> buildArrayList(int
n)
public int findMostPairs(Factors f) {
public String toString() {

public class FactorPair

private int factor1;
private int factor2;
FactorPair(int f1, int f2)
public int getFactor1()
public int getFactor2()

Complete method toString below.

/* Returns a string containing all the FactorPair objects
in the ArrayList pairs */
public String toString()

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the

top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

4. The Array2DMultiples class contains two static methods.

The first method, buildMatrix, is to construct and return a two-
dimensional array. The parameters to the method will be a one-
dimensional array and an int field cols. The length of the one-
dimensional array will determine the number of rows in the two-
dimensional array, while the cols field will determine the number
of columns.

Each element in the parameter array will be used to determine
the multiples that will populate the two-dimensional array. The
buildMatrix method should work for any one-dimensional array
that is provided, as well as any number of columns specified.
For example, given the following parameters: int [] arr = {7,
6, 2, 6} and cols = 5, the two-dimensional array generated
would have 4 rows and 5 columns. The first row would have
multiples of 7, the second row would have multiples of 6, the
third row would have multiples of 2, and the fourth row would
have multiples of 6:

The second method, eliminateDuplicateRows will create a new
array by removing any duplicate rows from the array. The above
array would be changed to look like this:

/** Builds a two-dimensional array using the length of arr as the
number of rows and
* cols as the number of columns
* @Precondition: arr.length > 0, cols > 0
* @Postcondition: return the two-dimensional array
*/
public static int[][] buildMatrix(int [] arr, int cols)
{ /* to be implemented in part (a) }

/** Create a new array by removing all duplicate rows from
arrWithDups
* @Postcondition: arrWithDups is not modified
* returns the new two-dimensional array with no
duplicate rows
*/
public static int [][] eliminateDuplicateRows(int [][]
arrWithDups)
{ /* to be implemented in part (b) }

(a) The Array2DMultiples class includes the method buildMatrix.

Code segments

int [] arr = {5, 2, 3, 5};
int[][] arr2d = buildMatrix(arr, 6);

Two-dimensional Matrix generated and returned

Complete method buildMatrix below.

/** Builds a two-dimensional array using the length of arr as the
number of rows and
* cols as the number of columns
* @Precondition: arr.length > 0, cols > 0
* @Postcondition: return the two-dimensional array
*/
public static int[][] buildMatrix(int [] arr, int cols)

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

(b) The Array2DMultiples method includes the method
eliminateDuplicateRows.

Examine the two-dimensional array parameter. Eliminate any
duplicate rows and return a smaller two-dimensional array.
arrWithDups:

After the call: eliminateDuplicateRows(arrWithDups), the array
that is returned, will not have any duplicate rows.

Complete method eliminateDuplicateRows below.

/** Create a new array by removing all duplicate rows from
arrWithDups
* @Postcondition: arrWithDups is not modified
* returns the new two-dimensional array with no
duplicate rows
*/

public static int [][] eliminateDuplicateRows(int []
[] arrWithDups)

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

STOP

END OF EXAM

Practice Test 2: Answers and
Explanations

PRACTICE TEST 2 EXPLANATIONS
Section I: Multiple-Choice Questions
1. D

The question involves integer division, modulus division, and
order of operations. One important thing to remember is integer
division is performed if both sides of the division operator (/) are
integers, i.e., no rounding will occur. Another is that division,
multiplication, and modulus division (%) are all performed left to
right.

Statement (I) will perform integer division first: 24 / 5 = 4. Next, 4
% 3 = 1. Finally, 1 * 2 = 2. This solution is less than 5 so (I) must
be part of the answer. Eliminate (B).

Statement (II) will also perform integer division first: 12 / 3 = 4.
Next, 4 * 2 = 8. Finally, 8 + 1 = 9. This solution is not less than 5,
so (II) must not be part of the answer. Eliminate (C) and (E).

Statement (III) will perform mod first: 4 % 3 = 1, Next, 1 * 2 = 2.
Finally, 1 + 2 = 3. This solution is also less than 5, so (III) must be
part of the solution. Eliminate (A).

Since (I) and (III) yield solutions less than 5, the correct choice is
(D).

2. E

The code “\n” is an escape character or line break in Java,
causing the printing to begin a new line. This eliminates (A), (B),
and (C) since those choices print \n instead of skipping to a new
line. Additionally, the backslash character (\) is used to indicate
when a special character such as a “ or \ is to be printed: \” will

print a double-quote (“) and \\ will print the backslash. The
forward slash (/) does not need any special character to print,
thus the // will print two forward slashes as seen in (E). Choice
(D) is not correct as it only has one forward slash. Choice (E) is
correct.

3. D

This question involves matching data types of the arguments
with parameters expected by the constructors. Choice (A) uses
the first constructor on lines 7–12. An integer such as 60 may be
used in a field defined as double. Choice (B) again uses the
same constructor, this time by casting 13.0 to an int field. Choice
(C) uses the constructor on lines 13–17. One might think the
toString() method may cause a nullExceptionPointer because
the name was not initialized. That exception would not occur
when printing the field, only if trying to use the field, such as in a
decision statement looking for a value other than null. Choice
(E) uses the constructor on lines 18–21. The height and
rateOfGrowth fields will contain 0.0 and 0, respectively. Choice
(D) will cause an error because there is no constructor
expecting a double datatype as the third parameter. The answer
is (D).

4. D

The client method header for computeBonus has two parameters:
computeBonus(SalesRep s, double percentage)
The instance field ytdSales within the SalesRep object is private,
so the data must be referenced using an accessor:
objectName.methodname(). Thus, to obtain ytdSales for the object
named s, we must use s.getYtdSales(), eliminating choices (A),
(B), and (C). The field percentage is a parameter provided to the
method, not a public instance field of the object, so there is no

need to use s.percentage as represented in choice (E). Thus,
(D) is the correct answer.

5. C

Choice (A) is incorrect because it uses ArrayList as the data
type in the enhanced-for loop, rather than SalesRep (the type of
objects in the ArrayList). Choice (B) is incorrect because
r.get() would not be a valid identifier for each entry of the
ArrayList. Choice (D) is incorrect because it uses the data type
with .get(index) (it should use the name of the ArrayList with
.get (index)). Choice (E) accesses the ArrayList and method
correctly; however, the loop goes out of bounds because the last
index should be one less than the size of the ArrayList. Choice
(C) uses an enhanced-for loop (which will not go out of bounds)
and accesses the ArrayList and method correctly. The answer
is (C).

6. D

When using the substring method, the first character of a string
is at index 0. The parameters of the substring command are the
first index and ending index, but the command stops just before
the ending index is reached, so substring(1, 3) will print
characters at indexes 1 and 2 (“up”). This eliminates Choices
(A) and (C). The command str.substring(1) accesses the first
character to the end of the string (“uperstar”), but it is NOT
assigned back into str. Since strings are immutable, str is not
modified (on the third or fifth lines)—“up” will be printed three
times. Choice (E) is incorrect, since the code never reaches an
out of bounds condition by using indexes 1 and 3. The answer is
(D).

7. C

Statement (I) will successfully alternate the value of isBlack.
The right side of the assignment statement will change the value
to the opposite value every time the code is executed. Eliminate
(B). Statement (II) specifically checks whether the value of
isBlack is false. If so, it will change the value to true. The else
will only be executed if isBlack is true, in which case it will
change the value to false, so (II) is successful at alternating
values, as well. Eliminate (A) and (D). Statement (III) only
changes the value of isBlack if it is true: there is no provision to
change the value from false to true, so Statement (III) is
incorrect. Eliminate (E). Since only (I) and (II) would successfully
alternate the values, the answer is (C).

8. A

Choice (A) would simply compare the object references of the
two String variables, not the actual contents of the fields. Both
choices (B) and (C) are perfectly straightforward methods to
compare the contents of String variables. Choice (D) utilizes the
substring method two different ways to examine the entire string
for both str1 and str2 with the .equals() method being used to
compare the contents of the strings. Choice (E) handles the
comparison by making sure the strings are the exact same
length and that str2 is located in str1 at index 0 (the very
beginning of the string). Thus, (A) is the correct answer.

9. E

DeMorgan’s Law can simplify this problem.
The original statement is
!(p || (q || !r))
After DeMorgan’s law
!p && !(q || !r)
After DeMorgan’s a second time

!p && !q && r
Since all the operators are &&, every part of the compound
statement must evaluate to true.
The values must be: p = false, q = false, and r = true. The
correct answer is (E).

10. A

Short circuit evaluation is used when the first part of an &&
condition is false (since both sides of an && condition must be
true, a false in the first part causes the whole expression to be
false). Both (D) and (E) start with an && operator. Since neither
has a false value in p, short circuit cannot be used on these
statements.

Alternatively, short circuit can be used if the first part of an ||
condition is true (since only one side of an || condition needs to
be true, a true in the first part causes the whole expression to
be true). Since p is has a false value in (B) and (C), a short
circuit cannot be used on these statements.

Choice (A) has a true value as the first part of an expression
with the || operator, making the whole statement evaluate to
true. The answer is (A).

11. E

Start with DeMorgan’s Law.
The original statement is
!(!p || q) || !(p || !q)
After DeMorgan’s Law
(p && !q) || (!p && q)
Examining the conditions on either side of the || operator, the
truth values of p and q are combined with an && operator and

are direct opposites. Thus, if the two values are direct opposites
of each other on either side of the || operator, the entire
expression would be true. The correct choice is (E).

12. B

The outer loop will execute 10 times, where i will range from 1 to
10 (< 11) incrementing by one each time. The inner loop will
execute 5 times, where j will range from 10 to 2, decreasing by 2
each time and stopping after j is no longer greater than 1. The
variable count will be incremented by 1 each time the inner loop
executes, so (10 * 5) = 50 times. The variable star starts with one
“*” but adds two more (“**”) each time the inner loop executes. (1
+ 50 * 2) = 101. The final length of star will be 101. Thus, (B) is the
correct answer.

13. B

The outer loop will execute 5 times (i is initialized to 1, the loop
will continue until i is no longer <= 5). Within the outer loop are
two loops, each using print statements so the output will
continue across a single line. After the two loops execute, a
println statement will advance the print to the next line.

The first inner loop initializes j to 1 and continues while it is less
than i. So, on the first row, this loop doesn’t execute at all
because j and i are both 1 and j is not less than i. The “- ” is
never written, thus eliminating choices (A) and (E).

The second loop initializes j as the same value as i, continuing,
up to 5, thus generating 5 “* ”, eliminating choice (C).

Each time the outer loop executes, one additional “- ” is written
in the first loop, and one fewer “* ” is written in the second loop.

Choice (D) writes the correct number of each symbol, but in
reverse order. The “- ” is written in the first inner loop. Thus,
choice (B) is correct.

14. C

Three trace tables will make short work of this problem.
In (I), the variable i will have the values 1 and 2; the loop will
stop when i increments to 3.

i 2 * i +
1;

sum

1 2 * 1 + 1 =
3

3

2 2 * 2 + 1 =
5

8

In (II), the variable i will have the values 1–5, the loop will stop
when i increments to 6.

i if (i % 2 == 1) sum

1 1 % 2 == 1, so add i to
sum

1

2 2 % 2 == 0 1

3 3 % 2 == 1, so add i to
sum

4

4 4 % 2 == 0 4

5 5 % 2 == 1, so add i to
sum

9

In (III), the variable i will start at 5; then the loop will change i to
3, then 1. The loop will not be re-entered when i is 1.

i
5

Initial values, before the loop begins sum
5

3 sum += i 8

1 9

Using the trace tables above, (C) is the answer because (II) and
(III) both print 9, while (I) prints 8.

15. B

Segment (I) starts the loop with k equal to 1, increments k by 1,
then adds k to sum. The variable k is added whether it is even or
odd, thus this option is unacceptable. Eliminate (A), (D), and (E).

Segment (II) starts the loop with k equal to 1, increments k by 2,
ensuring only odd numbers will be added. The loop continues
while k is less than or equal to number. If number is odd, the last
value of k be equal to number, while if k is even, the last value of
k to be added to the sum will be the previous odd number. Only
odd integers up to number will be added. This segment works
properly. Eliminate (C).

Four choices have been eliminated, so there is no need to go
further. However, to see why (III) does not work, note that it
starts the loop with k equal to number and decrements k by 2. If
number is odd, this option will work as k will always be odd.
However, if number is even, even numbers will be added, which
does not meet the criteria of the method.

Since only (II) works properly, the correct choice is (B).

16. C

Sample (I) initializes loc to -1. If every element in the array
contained Integer.MIN _ VALUE, (I) would never update loc to a
location within the array. Therefore, (I) is not correct. Eliminate
(A), (D), and (E).

Sample (II) traverses the array backwards, recording the index
of the last entry as loc. Using the example data provided and
directions in the Java doc, the location of the first matching
element in the array should be returned. When there is a
duplicate the entry closest to the end will be returned. Since (II)
is incorrect, eliminate (B).

Only one choice remains, so there is no need to continue.
However, to see why (III) is correct, note that it takes the first
element in the array as max and initializes loc to 0, assuming the
first element in the array is currently the largest. The array is
traversed, looking for a larger element, updating max and loc if
one is found. This strategy works perfectly and is the only
possible solution to the problem. Thus, (C) is correct.

17. D

Choice (A) works, as the static fields of the Integer class,
Integer.MIN _ VALUE and Integer.MAX _ VALUE, represent the
range of numbers that can be represented in 4 bytes of data (the
size of an int field). Since (A) does not cause an error, (E) is
also incorrect. The smallest number an int field can hold is the
value held in Integer.MIN _ VALUE: thus, when 1 is subtracted,
an overflow error occurs, resulting in Integer.MAX _ VALUE. The
result is unexpected, but no error is thrown by the compiler or at
run time. Choice (B) can be eliminated. In (C), the fields are
added, producing -1, not causing any error at all. Choice (D) will

cause a compiler error because the value being assigned is 1
larger than the limit of what an int data field can store.

18. A

The method half divides the parameter and returns the result of
dividing the parameter by 2. Since neither n nor 2 is a double
data type, only integer division occurs. Thus, when n is 5, n / 2
will be 2, but 2.0 is returned because the return type was
specified as double. The contents of num remain the same (5).
The print statement starts with the empty string (“”), which will
cause the results of half(num) and num to be concatenated
together as strings. Thus, the output is 2.05 (where 2.0 and 5
have been concatenated together as a string). Choice (A) is
correct.

19. B

The getPerimeter() method returns a double, so (A) and (C) can
be eliminated. The MyRectangle constructor creates a local
variable perimeter, which has the same name as the instance
variable. When this occurs and the keyword this has not been
used, the local variable is accessed. Thus, the local variable
perimeter is assigned the value of 10, but the instance field only
contains a default value of 0. When the getPerimeter() method
returns the value of perimeter as a double, it returns 0.0
because the instance field perimeter has never been assigned
any other value. Choice (D) is eliminated. Also of note: no error
is thrown because an int can be returned when a double is
expected because there is no loss of precision, so (E) is not
correct. The answer is (B).

20. D

Choice (D) uses the same number and the same type of
parameters in the same order as the existing constructor:
String, int, boolean, int. This is not allowed in Java because
it would be impossible to know which constructor to invoke. All
the other choices would be acceptable because they have
different numbers of parameters. The answer is (D).

21. E

The Car() constructor has no parameters, so all primitive fields
will be initialized to 0 or false appropriately, but the String field
will be initialized to null. The setModel method does not initialize
the instance field model. When the parameter has the same
name as the instance field, the keyword this must be used,
otherwise the parameter is simply being assigned to itself. When
the if statement attempts to compare the contents of model to
“Tacoma”, the model contains null so a NullPointerException
will be thrown. Choice (E) is correct.

22. E

The field mpg is supposed to be rounded to the nearest integer.
Choices (A), (B), and (C) produce real numbers without casting
to int so they can be eliminated. The division in (D) produces a
double but casts the double to an integer field too early. When
0.5 is added, the calculation has once again produced a double.
Choice (E) performs regular division, then correctly adds 0.5
before casting to an integer. Casting to integer will truncate the
decimal portion of the number. This algorithm will round the
answer correctly. The answer is (E).

23. A

The superclass object Bee is referencing the subclass object
Queen. When the object bee1 invokes the method toString(),
dynamic binding ensures the correct method is called. Since
bee1 is a Queen, the toString() method in the Queen class is
called. The toString() method returns “The queen lays 2000
eggs.” Choice (A) is correct.

24. A

The name field has private access in the Bee class. The accessor
must be in the Bee class because it is not visible to the Queen
class. If access is needed within the Queen class, the accessor
from the Bee class could be called with super.getName(). Choice
(A) is correct.

25. D

Lifespan is part of the state of a Bee. There is no need for an
additional class based on only that piece of information, so (A)
can be eliminated, as well as (E). Choices (B) and (C) can be
eliminated because the number of drones, workers, or queens
may be relevant to the design, but more information would be
needed to support a design decision. State and behavior are the
cornerstones of class design. Detailing what is unique about
workers and drones and what is like other bees will dictate the
class where fields should reside and behavior is defined. Choice
(D) is the correct answer.

26. A

An array is passed by reference to a method, so any changes
that are enacted upon the array in the method are actually
changing the array itself. The array is initialized with 5 elements
and each element is assigned the index multiplied by 5, so (A) is

correct. Choice (B) is incorrect because it assumes the array
was unchanged by the method and allows for 6 elements rather
than 5. Choice (C) is incorrect because it again allows for 6
elements, although they would reflect the index multiplied by 5.
Choice (D) is incorrect: there is no type mismatch because an
integer can be assigned to a double data type (there is no loss
of precision). Choice (E) is incorrect because the array is
defined using the primitive int, so it was initialized with 0s until it
later is assigned the multiples of 5. The answer is (A).

27. A

It is helpful to label the rows and columns with their indexes to
assist with the math operations.

A single loop controlled by j runs from 0 to less than the
number of rows (4) The calculations for building the one-
dimensional array are as follows:

result[0] = matrix[3][0] – matrix[0][3] 4 – 4 =
0

result[1] = matrix[3][1] – matrix[1][3] 3 – 7 =
-4
result[2] = matrix[3][2] – matrix[2][3] 2 – 8 =
-6
result[3] = matrix[3][3] – matrix[3][3] 1 – 1 =
0

Choice (A) is correct.

28. D

Math.random() * 100 generates real numbers between 0 and
100. It includes 0, and goes up to, but does not include, 100.
Math.random() * 100 + 1 will generate real numbers from 1, up
to, but not including, 101. Choice (A) generates numbers of type
double, which cannot be added to an Integer ArrayList. Choice
(B) will generate numbers of type int ranging from 0 to 99 (int
will truncate the decimal portion, not round it). Choice (C) will
generate numbers between 0 and 100. Choice (E) will generate
numbers between 1 and 100 but attempts to cast them directly to
class Integer rather than primitive type int, which will not work.
Choice (D), which is the correct answer, will generate numbers
between 1 and 100. The numbers are cast to (int), which can
then be added to the Integer ArrayList. The answer is (D).

29. E

The ArrayList is initialized to A B C D E. The first loop removes
the entry at the following indexes, modifying the ArrayList as
shown in the table below. It’s important to remember that the
ArrayList is shrinking in size: the loop will only carry out twice.

Code list1

remove(0) B C D E

remove(2) B C E

The second loop inserts an “*” three times, each time at index 1.

Code list1

add (1, “*”) B * C E

add (1, “*”) B * * C E

add (1, “*”) B * * * C E

The answer is (E).

30. E

First, diagram the calls to the method, stopping each branch at
its base case.

31. D

After the call mystery(“PLANT”), i is 1,

temp = s.substring(s.length() - i);
s.substring(5 - 1);

s.substring(4); simply gives “T”

The length of temp on the next call is only 1 so nothing more is
printed, and mystery is no longer called. Choice (D) is the correct
answer.

32. D

The ArrayList schedule, contains objects that are Play
datatypes. When schedule[1] is going to be printed, at run-time,
Java looks to see whether the object.toString() method has
been overridden. In other words, it looks to see whether there is
a toString() method in the Play class. This method exists and
does the following:

return performance + “ with ” + starringActor + “ as ” +
mainCharacter;

The word “ with ” will be printed and does not exist in (A) and
(C), so these choices can be eliminated. The first part of the
return statement, returns performance is an object of type
Performance. Again, Java looks to see whether there is a
toString() method in the Performance class. This method also
exists and does the following:

return name + “ will be performed in ” + season + “ of ” +
year;

Since there is a toString() method defined, Java will use it
instead of printing the memory location of the object, eliminating

(B). No errors will be thrown, eliminating (E). The following will
be printed:

Peter Pan will be performed in Spring of 2023 with Charlie
as Peter

Therefore, the correct answer is (D).

33. B

Choice (A) is incorrect because it tries to access the field
starringActor, which is not visible because it is specified as a
private variable in Performance. An accessor method is needed
to use it. Choice (B) correctly uses an accessor method to return
starringActor so that it may be added to the actors ArrayList.
Choice (C) is incorrect because it uses the wrong data type in
the enhanced-for loop: it needs to use Play instead of
Performance. Choice (D) also tries to access starringActor
directly but cannot because the field is private. Choice (E) is
incorrect because it attempts to use ArrayList notation (get[j])
with an array. Choice (B) is the correct answer.

34. E

Option (I) creates a Flower object using the Flower constructor
without parameters. Since Daffodil is a subclass of Flower, it
inherits all the attributes and methods in the Flower class. Both
(II) and (III) use the Flower constructor without parameters.
Options (I), (II), and (III) all work. Choice (E) is the answer.

35. B

The number of searches needed to find a target value within a
sorted array is 2n, where the value is just over the number of

elements in the array. In this case, 2n = 4000. 211 = 2048, so (A) is
not large enough. Choice (B) leads us to 212 = 4096, which will
provide enough searches to find a target in 4000 elements.
Choices (C), (D), and (E) are too large. Choice (B) is the correct
answer.

36. C

The index used to control the outer loop runs from 1 to just
under the length of the array. If an array had four elements, the
indexes would be 0, 1, 2, 3. The loop would run from 1 to 3, which
would be one less than the length of the array. The correct
answer is (C), n – 1.

37. A

The inner loop is controlled by:

while (j >= 0 && arr[j] > num)

It is helpful to look at conditions in which the loop will stop
executing or not execute at all. With the && condition, both
expressions have to be true, so look closer at the second part to
determine when it might not be true. The logic surrounding the
loop starts by assigning the second value in the array to num,
then setting i to the previous location, resulting in two
consecutive numbers in the array being compared. If those
numbers happen to be the same OR in ascending order, the
loop will not execute at all. Thus, the correct answer is (A), 0
times.

38. C

The expression mat.length returns the number of rows in a 2D
array, while mat [0].length returns the number of columns in
the first row. This code is selecting each row and moving
columns within that row. There are no bounds errors with the
loops, so (E) is incorrect. The value in the first column is
assigned to temp, while the loop travels to the end of the row
shifting all elements to the left:

mat[a][b - 1] = mat[a][b];

When the row is completed, the value in temp is assigned to the
last column:

mat[a][mat[0].length - 1] = temp;

Choice (C) is the correct answer.

39. A

The ArrayList needs to store Baseball objects and Sport
objects. Since Baseball extends Sport, the ArrayList should be
declared with the datatype Sport. Referring to polymorphic
ideas, Baseball IS-A Sport, not the other way around. This
eliminates (B), (C), (D), and (E). Choice (A) is the correct
answer.

40. C

Option (I) will remove some but not all the elements containing
“Summer” due to the changes indexing as elements are removed
within the loop.

b1:
Spring
2022

index: 0

b2:
Summer
2022

index: 1

b3:
Summer
2022

index: 2

b4:
Summer
2022

index: 3

s1:
Winter
2024

index: 4

The first pass through the loop, the object at index 0 is
examined. The season is not “Summer”: the element is not
removed.

The second pass through the loop, the object at index 1 is
examined. The season is “Summer”: the element is removed,
and the indexes are updated.

b1:
Spring
2022

index: 0

b3:
Summer
2022

index: 2 1

b4:
Summer
2022

index: 3 2

s1: index: 4 3

Winter
2024

The third pass through the loop, the object at index 2 is
examined. But notice, b4 is being examined (b3 has been
skipped because the indexes were updated after the remove).
The object b3 will not be removed even though the season is
“Summer” because it has been skipped. Therefore, (I) will not
work. Eliminate (A), (D), and (E).

An enhanced-for loop creates a local variable that does not
reference an element in an array. It is assigned a value from the
ArrayList and is used for read-only purposes. Thus, no
elements in the ArrayList can be used with this method and
Option (II) will not work. Eliminate (B).

Only one choice remains, so there is no need to continue.
However, to see why (III) does work, note that it is similar to (I)
but traverses the ArrayList backwards. Thus, when an element
is removed from the ArrayList, the indexes update on elements
that have already been processed. No elements containing
“Summer” will be affected. Option (III) is the only option that will
work properly, making (C) the correct choice.

Section II: Free-Response Questions
1. PigLatin—Canonical solution
 (a) public boolean isLetterAVowel(String letter)

{
if (letter.equals(“a”) || letter.equals(“e”) ||
letter.equals(“i”) || letter.equals(“o”) ||
letter.equals(“u”))

return true;
return false;

}

 (b) public String convertWord(String word)
{

String w = word;
String firstLet = w.substring(0,1);
boolean firstIsVowel = isLetterAVowel(firstLet);
if (firstIsVowel)

return word + “way”;
String secondLet = w.substring(1,2);
boolean secondIsVowel = isLetterAVowel(secondLet);
if (secondIsVowel)

return word.substring(1) + firstLet + “ay”;
return word.substring(2) + firstLet + secondLet +
“ay”;

}

 (c) public String convertPhrase()
{

if (phrase == null || phrase.length() == 0)
return “”;

String p = phrase;
String newPigLatinPhrase = “”;
String word = “”;
int j = 0;
boolean isLastWord = false;
int k = p.indexOf(“ ”);
while (k != -1)
{

word = convertWord(p.substring(0, k));
newPigLatinPhrase += word + “ ”;
p = p.substring(k + 1);
k = p.indexOf(“ ”);

}
if (p.length() > 0)
{

word = convertWord(p);
}
newPigLatinPhrase += word + “ ”;
return newPigLatinPhrase;

PigLatin Rubric

Part (a)

+2

+1 Must use the correct comparison for string
.equals()

+1 Correctly returns true or false
Part (b)

+4

+1 Correctly finds first character and second
character.

+1 Checks whether the length of the word is 1
and whether it starts with a vowel; returns
vowel + “way”, otherwise returns word +
“ay”

+1 Correctly converts word to PigLatin
following the three rules

+1 Returns word converted to pigLatin, does
not change the parameter: word

Part (c)

+3

+1 Checks for null or empty string. MUST
check for null first. Returns empty string.

+1 Correctly finds a word and calls
convertWord(word) for each word in the
phrase, including the last word

+1 Concatenates all converted words that have
been returned into a new pig latin phrase

2. PremierMember—Canonical solution

public class PremierMember extends FrequentFlyerMember
{

boolean premierClubMembership;
int freeBags;
String otherFreqFlyerMember;

PremierMember(int num, String name, int miles, String
otherMember)
{

super(num, name, miles);
premierClubMembership = true;
freeBags = 2;
otherFreqFlyerMember = otherMember;

}

public String getStatusInfo()
{

return super.getStatusInfo() + “ also a member
of ” + otherFreqFlyerMember;

}
}

PremierMember Rubric
+9

+1 Correct class declaration: must use extends
FrequentFlyerMember

+1 Must have 3 private instance variables for
premierClubMembership, freeBags,
otherFreqFlyerMember

+1 Instance fields and assignments from
FrequentFlyerMember are not repeated

+1 Header for constructor matches class name
and uses 4 parameters as shown (parameters
may be in a different order)

+1 First instruction in constructor must be
super(num, name, miles); (matching the

parameters in the constructor’s parameters)

+1 Three other assignment statements in
constructor as shown for
premierClubMembership, freeBags,
otherFreqFlyerMember

+1 Method header: public String
getStatusInfo()

+1 Uses super.getStatusInfo() from the parent
class

+1 Concatenates: “ also a member of ” +
otherFreqFlyerMember;

3. FactorPair—Canonical solution

 (a) public ArrayList<FactorPair> buildArrayList(int n)
{

ArrayList<FactorPair> tempPairs = new
ArrayList<FactorPair>();
for (int i = 1; i < (n / 2); i++)
{

if (n % i == 0)
{

if (i <= (n / i))
{

FactorPair temp = new FactorPair(i, n /
i);
tempPairs.add(temp);

}
}

}
return tempPairs;

}

 (b) public int findMostPairs(Factors f)
}

if (this.pairs.size() > f.pairs.size())

return this.number;
else if (f.pairs.size() > this.pairs.size())

return f.number;
else

return -1;
}

 (c) public String toString()
}

String s = “”;
for (FactorPair a : pairs)
{

s += “(“ + a.getFactor1() + ” “ + a.getFactor2()
+ ”) ”;

}
return s;

}

FactorPair Rubric
Part (a)

+5

+1 Correct declaration of ArrayList of type
FactorPair

+1 Loop to find factors (1 through n, or 1
through n / 2) examines every number for
factors without any bounds errors

+1 Finds factors correctly—looks for evenly
divisible factors that are less than or equal
to n / i (need the = to find factors of perfect
square numbers, such as 5 in the number
25)

+1 Builds FactorPair object and adds it to the
ArrayList

+1 No duplicate factors are added

Part (b)

+2

+1 Correctly evaluates the size of the two
ArrayLists to find the object with the greater
number of FactorPair objects

+1 Properly returns the number that had the
most FactorPair objects or –1 if both
numbers had the same number of
FactorPair objects. Must use
objectname.number.

Part (c)

+2

+1 Properly traverses the entire ArrayList with
no bounds errors

+1 Properly accesses the FactorPair objects
using the getFactor1 and getFactor2
methods

4. Array2DMultiples—Canonical solution

 (a) public static int[][] buildMatrix(int [] arr, int cols)
{

int [][] mat = new int[arr.length][cols];
for (int r = 0; r < arr.length; r++)
{

int hold = arr[r];
for (int c = 0; c < cols; c++)

mat[r][c] = hold * (c + 1);
}
return mat;

}

 (b) public static int [][] eliminateDuplicateRows(int [][]
arrWithDups)
{

int [][] arr = arrWithDups;
int holdRow = 0;
int r = 1;
while (holdRow < arr.length - 1)
{

while (r < arr.length)
{

if (arr[holdRow][0] == arr[r][0])
{

int [][] smallerArr = new int
[arr.length - 1][arr[0].length];
for (int row = 0; row < r; row ++)

for (int col = 0; col <
arr[0].length; col++)
smallerArr[row][col] = arr[row]
[col];

for (int row = r + 1; row < arr.length;
row ++)

for (int col = 0; col <
arr[0].length; col++)
smallerArr[row - 1][col] =
arr[row][col];

arr = smallerArr;
}
else

r++;
}
holdRow ++;
r = holdRow + 1;

}
return arr;

}

Array2DMultiples Rubric
Part (a)

+3

+1 Correct declaration of two-dimensional
array using arr.length as the number of
rows, cols as the number of columns

+1 Loops for rows and columns are correctly
executed without any bounds errors

+1 Elements in the array are correctly assigned
multiples of the first entry in the row

Part (b)

+6

+1 Parameter arrWithDups is not modified
+1 A row is held; a loop is used to examine

each subsequent row for duplicates without
any bounds errors

+1 Duplicate row is identified
+1 Smaller 2D array is declared
+1 New 2D array is built correctly without

duplicates
+1 New 2D array is returned

