
Section I
The Exam

AP® Computer Science A Exam
SECTION I: Multiple-Choice Questions

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO
SO.

At a Glance

Total Time
1 hour 30 minutes
Number of Questions
40
Percent of Total Score
50%
Writing Instrument
Pencil required

Instructions

Section I of this examination contains 40 multiple-choice questions.
Fill in only the ovals for numbers 1 through 40 on your answer sheet.

Indicate all of your answers to the multiple-choice questions on the
answer sheet. No credit will be given for anything written in this exam
booklet, but you may use the booklet for notes or scratch work. After
you have decided which of the suggested answers is best,
completely fill in the corresponding oval on the answer sheet. Give
only one answer to each question. If you change an answer, be sure



that the previous mark is erased completely. Here is a sample
question and answer.

Sample Question

Chicago is a
(A)     state
(B)     city
(C)     country
(D)     continent
(E)     county

Sample Answer

Use your time effectively, working as quickly as you can without
losing accuracy. Do not spend too much time on any one question.
Go on to other questions and come back to the ones you have not
answered if you have time. It is not expected that everyone will know
the answers to all the multiple-choice questions.

About Guessing

Many candidates wonder whether or not to guess the answers to
questions about which they are not certain. Multiple-choice scores
are based on the number of questions answered correctly. Points are
not deducted for incorrect answers, and no points are awarded for
unanswered questions. Because points are not deducted for incorrect
answers, you are encouraged to answer all multiple-choice
questions. On any questions you do not know the answer to, you
should eliminate as many choices as you can, and then select the
best answer among the remaining choices.



Java Quick Reference

Class Constructors
and Methods

Explanation

String Class
String(String str) Constructs a new String object that

represents the same sequence of
characters as str

int length() Returns the number of characters in a
String object

String substring(int
from, int to)

Returns the substring beginning at index
from and ending at index to – 1

String substring(int
from)

Returns substring(from, length())

int indexOf(String
str)

Returns the index of the first occurrence of
str; returns –1 if not found

boolean equals(String
other)

Returns true if this is equal to other;
returns false otherwise

int compareTo(String
other)

Returns a value <0 if this is less than
other; returns zero if this is equal to other;
returns a value >0 if this is greater than
other

Integer Class
Integer(int value) Constructs a new Integer object that

represents the specified int value
Integer.MIN_VALUE The minimum value represented by an int

or Integer



Integer.MAX_VALUE The maximum value represented by an int
or Integer

int intValue() Returns the value of this Integer as an int

Double Class
Double(double value) Constructs a new Double object that

represents the specified double value
double doubleValue() Returns the value of this Double as a double

Math Class
static int abs(int x) Returns the absolute value of an int value
static double
abs(double x)

Returns the absolute value of a double
value

static double
pow(double base,
double exponent)

Returns the value of the first parameter
raised to the power of the second
parameter

static double
sqrt(double x)

Returns the positive square root of a double
value

static double
random()

Returns a double value greater than or
equal to 0.0 and less than 1.0

ArrayList Class
int size() Returns the number of elements in the list
boolean add(E obj) Appends obj to end of list; returns true

void add(int index, E
obj)

Inserts obj at position index (0 <= index
<= size), moving elements at position
index and higher to the right (adds 1 to their
indices) and adds 1 to size

E get(int index) Returns the element at position index in the
list



E set(int index, E
obj)

Replaces the element at position index with
obj; returns the element formerly at position
index

E remove(int index) Removes element from position index,
moving elements at position index + 1 and
higher to the left (subtracts 1 from their
indices) and subtracts 1 from size; returns
the element formerly at position index

Object Class
boolean equals(Object other)

String toString()



Section I

COMPUTER SCIENCE A
SECTION I

Time—1 hour and 30 minutes
Number of Questions—40

Percent of total exam grade—50%

Directions: Determine the answer to each of the following questions
or incomplete statements, using the available space for any
necessary scratchwork. Then decide which is the best of the choices
given and fill in the corresponding oval on the answer sheet. No credit
will be given for anything written in the examination booklet. Do not
spend too much time on any one problem.

Notes:
Assume that the classes listed in the Quick Reference have been
imported where appropriate.
Assume that declarations of variables and methods appear within
the context of an enclosing class.
Assume that method calls that are not prefixed with an object or
class name and are not shown within a complete class definition
appear within the context of an enclosing class.
Unless otherwise noted in the question, assume that parameters
in the method calls are not null and that methods are called only
when their preconditions are satisfied.

1. Evaluate the following expression: 4 + 6 % 12 / 4

(A) 1
(B) 2
(C) 4



(D) 4.5
(E) 5

2. Which of the following expressions does NOT evaluate to 0.2?

(A) (1.0 * 2) / (1.0 * 10)
(B) 2.0 / 10
(C) (double) 2 / 10
(D) (double)(2 / 10)
(E) Math.sqrt(4) / Math.sqrt(100)

3. Choose the code used to print the following:

              “Friends”

(A) System.out.print(““Friends””);
(B) System.out.print(“//“Friends//””);
(C) System.out.print(“/“Friends/””);
(D) System.out.print(“\“Friends\””);
(E) System.out.print(“\\“Friends \\””);

4. Determine the output of the following code.

String animal1 = “elephant”;
String animal2 = “lion”;
swap(animal1, animal2);
animal1.toUpperCase();
animal2.toLowerCase();

System.out.println(animal1 + “     ” + animal2);

public static void swap(String a1, String a2) {
String hold = a1;
a1 = a2;
a2 = hold;

}



(A) elephant     lion
(B) ELEPHANT     lion
(C) lion     elephant
(D) LION     elephant
(E) LION     ELEPHANT

Questions 5–6 refer to the Constellation class below.

public class Constellation
private String name;
private String month;
private int northernLatitude;
private int southernLatitude;

Constellation(String n, String m)
{

name = n;
month = m;
northernLatitude = 0;
southernLatitude = 0;

}

Constellation(String n, String m, int nLat, int sLat)
{

name = n;
month = m;
northernLatitude = nLat;
southernLatitude = sLat;

}
public void chgMonth(String m)
{

String month = m;
}

5. Using the Constellation class, which of the following will cause
a compiler error?



(A) Constellation c1 = new Constellation(“Hercules”,
“July”);

(B) Constellation c2 = new Constellation(“Pisces”, “Nov”,
90, 65);

(C) Constellation c3 = new Constellation(“Aquarius”, “Oct”,
65.0, 90.0);

(D) Constellation c4 = new Constellation(“Leo”, “4”, 0, 0);
(E) Constellation c5 = new Constellation(“Phoenix”, “Nov”,

32, 90);

6. A programmer has attempted to add three mutator methods to
the Constellation class.

I.   public void chgLatitude(String direction, int latitude)
    {

if (direction.toUpperCase().equals(“N”))
northernLatitude = latitude;

else if (direction.toUpperCase().equals(“S”))
southernLatitude = latitude;

    }

II.   public void chgLatitude(int nLatitude, int sLatitude)
    {

northernLatitude = nLatitude;
southernLatitude = sLatitude;

    }

III. public void chgLatitude(double nLatitude, double
sLatitude)

    {
northernLatitude = (int) nLatitude;
southernLatitude = (int) sLatitude;

    }

Which of the three will compile without a compiler error?

(A) I only



(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

7. Determine the values of x and y after the following code runs.

int x = 10;
int y = 5;

if (x == 10)
{

if (y <= 5)
y++;

else if (y < 4)
x = 3;

else
y += 6;

}
if (y > 5)
{

if (x != 10)
{

x = 0;
y = 0;

}
else

x = -5;
}

(A) x = 0, y = 0
(B) x = –5, y = 6
(C) x = 10, y = 5
(D) x = 3, y = 5
(E) None of the above



8. A programmer intended to write code to print three words in
ascending lexicographical order. Follow the code and determine
the printed output.

1 String word1 = “frog”;
2 String word2 = “dog”;
3 String word3 = “cat”;
4
5 if (word1.compareTo(word2) < 0)
6  if (word2.compareTo(word3) < 0)
7  System.out.println(word1 + “ ” + word2 + “ ” + word3);
8  else
9  System.out.println(word1 + “ ” + word3 + “ ” + word2);
10 else
11  if (word1.compareTo(word2) > 0)
12  if (word2.compareTo(word3) < 0)
13  System.out.println(word1 + “ ” + word2 + “ ” +
word3);

14  else
15  System.out.println(word1 + “ ” + word3 + “ ” +
word2);

16  else
17  if (word2.equals(word3))
18  System.out.println(“all the words are the same”);
19  else
20  System.out.println(“word1 and word2 are duplicates”);

(A) frog   cat     dog
(B) cat     dog     frog
(C) dog     frog   cat
(D) frog   dog     cat
(E) dog     cat     frog

9. Using the following variable declarations, determine which of the
following would evaluate to true.

int temp = 90;
boolean cloudy = false;



   I. if (temp >= 90 && !cloudy)
  II. if (!(temp > 90 || cloudy))
III. if (!(temp > 90 && !cloudy))

(A) I only
(B) II only
(C) III only
(D) Two of the above will evaluate to true.
(E) All the above will evaluate to true.

10. Consider the following code:

1 String dog1 = new String(“Poodle”);
2 String dog2 = new String(“Beagle”);
3 dog1 = dog2;
4 String dog3 = new String(“Beagle”);
5
6 if (dog1 == dog2)
7  System.out.println(“dog1 and dog2 are one and the same
dog”);

8 else
9  System.out.println(“dog1 and dog2 are not the same dog”);
10
11 if (dog1 == dog3)
12  System.out.println(“dog1 and dog3 are one and the same
dog”);

13 else
14  System.out.println(“dog1 and dog3 are not the same dog”);
15
16 if (dog1.equals(dog3))
17  System.out.println(“dog1 and dog3 are the same breed”);
18 else
19  System.out.println(“dog1 and dog3 are not the same
breed”);

Which of the following represents the output that will be
produced by the code?



(A) dog1 and dog2 are one and the same dog
dog1 and dog3 are one and the same dog
dog1 and dog3 are the same breed

(B) dog1 and dog2 are one and the same dog
dog1 and dog3 are one and the same dog
dog1 and dog3 are not the same breed

(C) dog1 and dog2 are one and the same dog
dog1 and dog3 are not the same dog
dog1 and dog3 are the same breed

(D) dog1 and dog2 are one and the same dog
dog1 and dog3 are not the same dog
dog1 and dog3 are not the same breed

(E) dog1 and dog2 are not the same dog
dog1 and dog3 are not the same dog
dog1 and dog3 are the same breed

11. Choose the correct option to complete lines 3 and 4 such that
str2 will contain the letters of str1 in reverse order.

1 String str1 = “banana”;
2 String str2 = “”;
3 // missing code
4 // missing code
5 {
6  str2 += str1.substring(i, i + 1);
7  i--;
8 }

(A) int i = 0;
while (i < str1.length)

(B) int i = str1.length();
while (i >= 0)

(C) int i = str1.length() - 1;
while (i >= 0)



(D) int i = str1.length();
while (i > 0)

(E) int i = str1.length() - 1;
while (i > 0)

12. Consider the following code excerpt :

9   int n = // some integer greater than zero
10 int count = 0;
11 int p = 0;
12 int q = 0;
13 for (p = 1; p < n; p++)
14  for (q = 1; q <= n; q++)
15  count ++;

What will be the final value of count?

(A) nn

(B) n2  – 1
(C) (n – 1)2

(D) n(n – 1)
(E) n2

13. Given the following code excerpt, determine the output.

1 int x = 0;
2 for (int j = 1; j < 4; j++)
3 {
4  if (x != 0 && j / x > 0)
5  System.out.print(j / x + “ ”);
6  else
7  System.out.print(j * x + “ ”);
8 }

(A) 0 0 0
(B) 0 0 0 0



(C) 1 2 3
(D) 1 0 2 0 3 0
(E) ArithmeticException: Divide by Zero

14. Consider the following code:

1 String space = “ ”;
2 String symbol = “*”;
3 int num = 5;
4 for (int i = 1; i <= num; i++)
5 {
6  System.out.print(symbol);
7 }
8 System.out.print(“\n”);
9 for (int i = 1; i <= num; i++)
10 {
11  for (int j = num - i; j > 0; j--)
12  {
13  System.out.print(space);
14  }
15  System.out.println(symbol);
16 }
17 for (int i = 1; i <= num; i++)
18 {
19  System.out.print(symbol);
20 }

Which of the following represents the output?

(A) *****
****
***
**
*
*****



(B) *****
  ****
    ***
      **
        *
*****

(C) *****
        *
      *
    *
  *
*****

(D) *****
*
  *
    *
      *
*****

(E) *****
*
**
***
****
*****



15. What will be printed as a result of the following code excerpt?

int sum = 0;
for (int i = 1; i < 2; i++)

for (int j = 1; j <= 3; j++)
for (int k = 1; k < 4; k++)

sum += (i * j * k);

System.out.println(sum);

(A) 18
(B) 36
(C) 45
(D) 60
(E) 108

16. Consider the following code:

1 int j = 0;
2 String s = “map”;
3 while (j < s.length())
4 {
5  int k = s.length();
6  while (k > j)
7  {
8  System.out.println(s.substring(j, k));
9  k--;
10  }
11  j++;
12 }

Which of the following represents the output?

(A) map
ma
m
ap



a

(B) map
ma
m
ap
a
p

(C) map
ap
p
ap
p
p

(D) m
ma
map
a
ap
p

(E) p
ap
p
map
ma



m

17. A factorial is shown by an exclamation point(!) following a
number. The factorial of 5, or 5!, is calculated by (5)(4)(3)(2)(1) =
120.

Assuming n is an integer greater than 1, choose the method that
will return n!

I. public static int f(int n) {
int factorial = 1;
for (int i = n; i > 0; i--) {

factorial *= n;
}
return factorial;

}

II. public static int f(int n) {
int factorial = 1;
int j = 1;
while (j <= n) {

factorial *= j;
j++;

}
return factorial;

}

III. public static int f(int n) {
if (n == 1)

return n;
return n * f(n - 1);

}

(A) I only
(B) II only
(C) III only
(D) II and III only



(E) I, II, and III

Questions 18–20 refer to the code excerpt for the Tile class below:

1 public class Tile
2 {
3  private int styleNumber;
4  private String color;
5  private double width;
6  private double height;
7  private String material;
8  private double price;

9  Tile(int style, String col)
10  {
11  styleNumber = style;
12  color = col;
13  }
14  Tile(int style, String col, double w, double h, String
mat, double price)

15  {
16  styleNumber = style;
17  color = col;
18  width = w;
19  height = h;
20  material = mat;
21  price = price;
22  }
23  Tile(int style, String col, String mat, double price)
24  {
25  styleNumber = style;
26  color = col;
27  material = mat;
28  price = price;
29  }
30  public void chgMaterial(String mat)
31  {
32  String material = mat;
33  }
34  public String toString()



35  {
36  return (styleNumber + “ ” + color + “ ” + width + “ ” +
height + “ ” +

37  material + “ ” + price);
38  }
39 }

18. What is the output after the following client code is executed?

Tile t1 = new Tile(785, “grey”, “ceramic”, 6.95);
t1.chgMaterial(“marble”);
System.out.print(t1.toString());

(A) Tile@5ccd43c2
(B) 785 grey 0.0 0.0 marble 0.0
(C) 785 grey 0.0 0.0 ceramic 0.0
(D) 785 grey 0.0 0.0 ceramic 6.95
(E) 785 grey 0.0 0.0 marble 6.95

19. What is the output after the following client code is executed?

Tile t2 = new Tile(101, “blue”);
System.out.print(t2);

(A) Tile@5ccd43c2
(B) 101 blue 0.0 0.0 null 0.0
(C) Type mismatch error
(D) NullPointerException
(E) There will be no output; the program will not compile.

20. The Tile class is going to be used for an application built for a
small independent tile store. The owner wants the programmer
to add a field for the number of unopened boxes of tile he has
for each style of tile he has in stock and a method to change the
value. What would be the proper declaration for this field?



(A) public static int inventory;
(B) private static double inventory;
(C) final int inventory;
(D) private int inventory;
(E) private int [] inventory;

21. Given the following code excerpt:

9 int[] nums = {11, 22, 33, 44, 55, 66 };
10
11 for (int i = 0; i < nums.length; i++)
12  nums[nums[i] / 11] = nums[i];

Determine the final contents of nums.

(A) 1, 2, 3, 4, 5, 6
(B) 11, 11, 33, 33, 55, 55
(C) 11, 11, 22, 33, 44, 55
(D) 11, 22, 22, 33, 33, 55
(E) 11, 22, 33, 44, 55, 66

22. Given the following code excerpt:

13 int[] arr1 = {1, 2, 3, 4, 5, 6 };
14 int[] arr2 = arr1;
15 int last = arr1.length - 1;
16
17 for (int i = 0; i < arr1.length; i++)
18  arr2[i] = arr1[last - i];
19
20 for (int i = 0; i < arr1.length; i++)
21  System.out.print(arr1[i] + “   ”);
22
23 System.out.println(“ ”);
24
25 for (int i = 0; i < arr2.length; i++)
26  System.out.print(arr2[i] + “   ”);



Determine the statement below that reflects the resulting output.

(A) 1   2   3   4   5   6
1   2   3   4   5   6

(B) 1   2   3   4   5   6
6   5   4   4   5   6

(C) 6   5   4   3   2   1
6   5   4   4   5   6

(D) 6   5   4   4   5   6
1   2   3   4   5   6

(E) 6   5   4   4   5   6
6   5   4   4   5   6

23. Given the following code excerpt:

27 int[] arr3 = {1, 2, 3, 4, 5, 6 };
28
29 for (int element : arr3)
30 {
31  element *= 2;
32  System.out.print(element + “   ”);
33 }
34 System.out.println(“ ”);
35
36 for (int element : arr3)
37  System.out.print(element + “   ”);

Determine the statement below that reflects the resulting output.

(A) 1   2   3   4   5   6
1   2   3   4   5   6

(B) 2   4   6   8   10   12



1   2   3   4   5   6

(C) 2   4   6   8   10   12
2   4   6   8   10   12

(D) A compiler error will occur.
(E) A run-time exception will occur.

24. Given an array numbers containing a variety of integers and the
following code excerpt:

38 int holdSmallest = Integer.MAX_VALUE;
39 int holdLargest = 0;
40 int a = 0;
41 int b = 0;
42 for (int i = 0; i < numbers.length; i++)
43 {
44  if (numbers[i] <= holdSmallest)
45  {
46  holdSmallest = numbers[i];
47  a = i;
48  }
49  if (numbers[i] >= holdLargest)
50  {
51  holdLargest = numbers[i];
52  b = i;
53  }
54 }
55 System.out.println(a + “ ” + b);

Determine the statement below that reflects the most successful
outcome.

(A) The code will print the smallest and largest values in the
numbers array.

(B) The code will print the locations of the smallest and largest
values in the numbers array.



(C) The code will print the locations of the smallest and largest
non-negative values in the numbers array.

(D) The code will print the locations of the smallest value in the
numbers array and the largest non-negative value in the
numbers array.

(E) The code will print the locations of the smallest non-negative
value in the numbers array and the largest value in the
numbers array.

25. Choose the missing code below that will accurately find the
average of the values in the sales array.

57 int i = 0;
58 int sum = 0;
59 for (int element : sales)
60
61  //Missing code
62
63

(A) {
sum += element;

}
double avg = (double) sum / sales.length;

(B) {
sum += sales[i];

}
double avg = (double) sum / sales.length;

(C) {
sum += sales;

}
double avg = (double) sum / sales.length;

(D) {
sum += sales[element];

}



double avg = (double) sum / sales.length;
(E) {

sum += element[sales];
}
double avg = (double) sum / sales.length;

26. A programmer has written two different methods for a client
program to swap the elements of one array with those of
another array.

11  public static void swap1(int[] a1, int[] a2)
12  {
13  for (int i = 0; i < a1.length; i++)
14  {
15  int arrhold = a1[i];
16  a1[i] = a2[i];
17  a2[i] = arrhold;
18  }
19  }
20
21 public static void swap2(int[] a1, int[] a2) {
22  int [] arrhold = a1;
23  a1 = a2;
24  a2 = arrhold;
25  }

Which of the following statements best reflects the outcomes of
the two methods?

(A) Both methods will swap the contents of the two arrays
correctly in all cases.

(B) swap1 will swap the contents of the two arrays correctly only if
both arrays have the same number of elements, whereas
swap2 will work correctly for all cases.

(C) swap1 will swap the contents of the two arrays correctly only if
both arrays have the same number of elements, whereas



swap2 will never work correctly.
(D) swap1 will swap the contents of the two arrays correctly only if

both arrays have the same number of elements or a2 has
more elements, whereas swap2 will work correctly for all
cases.

(E) Neither method will swap the contents of the two arrays
correctly under any conditions.

27. Which code has declared and properly populated the given
ArrayList?

I. ArrayList <String> alist1 = new ArrayList<String>
(); alist1.add(“4.5”);

II. ArrayList <Integer> alist2 = new
ArrayList<Integer>(); alist1.add((int) 4.5);

III. ArrayList <Double> alist3;
alist3 = new ArrayList<Double>();
alist3.add(4.5);

(A) I only
(B) I and II
(C) I and III
(D) II and III
(E) I, II, and III

28. Given the following code excerpt:

ArrayList <Integer> alist1 = new ArrayList<Integer>();
int [] a1 = {2, 4, 6, 7, 8, 10, 11 };
for (int a : a1) {

alist1.add(a);
}
for (int i = 0; i < alist1.size(); i++) {

if (alist1.get(i) % 2 == 0){
alist1.remove(i);



}
}
System.out.println(alist1);

Determine the output.

(A) [4, 7, 10, 11]
(B) [2, 4, 7, 10, 11]
(C) [2, 7, 10, 11]
(D) [7, 11]
(E) An IndexOutOfBoundsException will occur.

Questions 29–30 refer to the following code excerpt.

2 ArrayList <Integer> alist5 = new ArrayList<Integer>();
3 int [] a1 = {21, 6, 2, 8, 1 };
4 for (int a : a1)
5 {
6  alist5.add(a);
7 }
8 for (int k = 0; k < alist5.size() - 1; k++)
9 {
10  for (int i = 0; i < alist5.size() - 2; i++)
11  {
12  if (alist5.get(i) > alist5.get(i + 1))
13  {
14  int hold = alist5.remove(i);
15  alist5.add(i + 1, hold);
16  }
17  }
18 }
19 System.out.println(alist5);

29. How many times will line 12 be executed?

(A) 6 times
(B) 12 times



(C) 15 times
(D) 16 times
(E) 20 times

30. What will be the final output after the code executes?

(A) [21, 8, 6, 2, 1]
(B) [6, 21, 2, 8, 1]
(C) [6, 2, 8, 21, 1]
(D) [2, 6, 8, 21, 1]
(E) [1, 2, 6, 8, 21]

31. Given nums—a rectangular, but not necessarily square, two-
dimensional array of integers—consider the following code
intended to print the array:

4 int [][] arr2d = {{1, 2, 3, 4 }, {5, 6, 7, 8 }};
5 String s = “”;
6 for (int a = 0; a < arr2d[0].length; a++)
7 {
8  for (int b = 0; b < arr2d.length; b++)
9  {
10  s += arr2d [b][a] + “ ”;
11  }
12  s += “\n”;
13 }
14 System.out.print(s);

Determine the resulting output.

(A) 1   2   3   4
5   6   7   8

(B) 1   5   2   6
3   7   4   8

(C) 1   2
3   4



5   6
7   8

(D) 1   5
2   6
3   7
4   8

(E) 1
2
3
4
5
6
7
8

32. Given nums—a rectangular, two-dimensional array of integers
—choose the code to print the entire array.

I. for (int r = 0; r < nums.length; r++)
{

for (int c = 0; c < nums[0].length; c++)
{

System.out.print(nums[r][c]);
}
System.out.print(“\n”);

}

II. for (int [] row : nums)
{

for (int col : row)
{

System.out.print(col + “ ”);
}
System.out.println(“”);

}

III. for (int r = 0; r < nums[0].length; r++)
{



for (int c = 0; c < nums.length; c++)
{

System.out.print(nums[r][c] + “ ”);
}

System.out.print(“\n”);
}

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

Questions 33–35 refer to the Percussion class and Xylophone class
below.

public class Percussion {
private String name;
private double weight;
Percussion() {
}
Percussion(String n, double w)
{

name = n;
weight = w;

}
public String getName()
{

return name;
}
public double getWeight()
{

return weight;
}

}
public class Drums extends Percussion
{
}



public class Xylophone extends Percussion {
private int numberOfKeys;

Xylophone(String name, double weight, int
numberOfKeys){

<missing code>

}
public int getNumKeys()
{

return numberOfKeys;
}

}

33. Which of the following is the most appropriate replacement for
<missing code> in the Xylophone constructor?

(A) this.numberOfKeys = numberOfKeys;
super(name, weight);

(B) super(name, weight);
this.numberOfKeys = numberOfKeys;

(C) super(name, weight);
numberOfKeys = this.numberOfKeys;

(D) this.numberOfKeys = numberOfKeys;
(E) numberOfKeys = this.numberOfKeys;

34. Assuming the above classes compile correctly, which of the
following will NOT compile within a client program?

(A) Xylophone [] xylophones = new Xylophone[5];
(B) Percussion [] xylophones = new Xylophone[5];
(C) Xylophone x1 = new Xylophone (“xylophone”, 65, 32);

System.out.println(x1.getNumKeys());
(D) Xylophone x1 = new Xylophone (“xylophone”, 65, 32);

System.out.println(x1.numberOfKeys);



(E) Drums [] drums;

35. A client program wishes to compare the two xylophone objects
as follows:

Xylophone x2 = new Xylophone (“xylophone”, 80, 32);
Xylophone x3 = new Xylophone (“xylophone”, 65, 32);

The two objects should be considered “equally heavy” if and
only if they have the same weight. Which of the following code
excerpts accomplishes that task?

(A) if (x2.weight == x3.weight)
System.out.println(“equally heavy”);

else
System.out.println(“not equally heavy”);

(B) if (x2.weight() == x3.weight())
System.out.println(“equally heavy”);

else
System.out.println(“not equally heavy”);

(C) if (x2.getWeight() == x3.getWeight())
System.out.println(“equally heavy”);

else
System.out.println(“not equally heavy”);

(D) if (x2.weight.equals(x3.weight))
System.out.println(“equally heavy”);

else
System.out.println(“not equally heavy”);

(E) The weights of the objects cannot be compared.

Questions 36–37 refer to the following classes.

public class Dog {
private int height;
private String size;
private String color;



Dog (int iheight, int iweight, String icolor)
{

height = iheight;
color = icolor;
if (iweight >= 65)

size = “large”;
else

size = “medium”;
}
public int getheight() {return height;}
public String getSize() {return size;}
public String getColor() {return color;}
public String toString() {return “       color is: ” +
color;}

}

public class SportingDog extends Dog {
private String purpose;
SportingDog(int h, int w, String c)

{
super(h, w, c);
purpose = “hunting”;

}
public String getPurpose()
{

return purpose;
}

}

public class Retriever extends SportingDog{
private String type;

Retriever(String itype, String icolor, int iweight)
{

super(24, iweight, icolor);
type = itype;

}
public String toString() {return “       type: ” +
type + super.toString();}

}



36. Which of the following declarations will NOT compile?

(A) Dog d1 = new SportingDog(30, 74, “Black”);
(B) Dog d2 = new Retriever(“Labrador”, “yellow”, 75);
(C) SportingDog d3 = new Retriever(“Golden”, “Red”, 70);
(D) SportingDog d4 = new Dog(25, 80, “Red”);
(E) Retriever d5 = new Retriever(“Golden”, “Blonde”, 60);

37. What is the output after the execution of the following code in
the client program:

Dog mason = new Retriever(“Labrador”, “chocolate”, 85);
System.out.println(mason.toString());

(A) type: Labrador
(B) type: Labrador, color is: chocolate, purpose: hunting
(C) color is: chocolate, type: Labrador
(D) type: Labrador, purpose: hunting, color is: chocolate
(E) type: Labrador, color is: chocolate

38. The following pow method was written to return b raised to the
xth power where x > 0, but it does not work properly. Choose
the changes that should be made to the method below so that it
works properly.

1 public double pow(double b, int x)
2 {
3 if (x == 0)
4  return 1;
5 else
6  return b + pow(b, x - 1);
7 }

(A) Change lines 3 and 4 to:
3 if (x == 1)



4  return 1;
(B) Change lines 3 and 4 to:

3 if (x == 1)
4  return b;

(C) Change line 6 to:
6  return b * pow(b, x - 1);

(D) Both (A) and (C)
(E) Both (B) and (C)

39. What is output given the following code excerpt?

System.out.println(f(8765));
public static int f(int n)
{

if (n == 0)
return 0;

else
return f(n / 10) + n % 10;

}

(A) 5678
(B) 8765
(C) 58
(D) 26
(E) A run-time error

40. Choose the best solution to complete the missing code such
that the code will implement a binary search to find the variable
number in arr.

int number = <some number in arr>;
System.out.println(search(arr, 0, arr.length - 1,
number));

public int search(int[] a, int first, int last, int
sought) {



int mid = (first + last) / 2;

if (<missing code>) {
last = mid - 1;
return search(a, first, last, sought);

}
else if (<missing code>)) {

first = mid + 1;
return search(a, first, last, sought);

}

return mid;
}

(A) a[mid] > sought, a[mid] < sought
(B) a[mid] + 1 > sought, a[mid] < sought
(C) a[mid] > sought, a[mid] - 1 < sought
(D) a[mid] + 1 > sought, a[mid] - 1 < sought
(E) a[mid] = sought, a[mid] = sought

END OF SECTION I

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK
YOUR WORK ON THIS SECTION.

DO NOT GO ON TO SECTION II UNTIL YOU ARE TOLD TO DO
SO.



Section II

COMPUTER SCIENCE A
SECTION II

Time—1 hour and 30 minutes
Number of Questions—4 Percent of Total Grade—50%

Directions: SHOW ALL YOUR WORK. REMEMBER THAT
PROGRAM SEGMENTS ARE TO BE WRITTEN IN JAVA™.

Notes:

Assume that the classes listed in the Java Quick Reference have
been imported where appropriate.

Unless otherwise noted in the question, assume that parameters
in method calls are not null and that methods are called only
when their preconditions are satisfied.

In writing solutions for each question, you may use any of the
accessible methods that are listed in classes defined in that
question. Writing significant amounts of code that can be
replaced by a call to one of these methods will not receive full
credit.

FREE-RESPONSE QUESTIONS

1. This question involves the implementation of a simulation of
rolling two dice. A client program will specify the number of rolls
of the sample size and the number of faces on each of the two
dice. A method will return the percentage of times the roll results
in a double. Double in this case means when two dice match or
have the same value (not a data type).



You will write two of the methods in this class.

public class DiceSimulation {

/** Sample size of simulation                      */
private int numSampleSize;

/** Number of faces on each die                */
private int numFaces;

/** Constructs a  DiceSimulation where  sampleSize is
the number of rolls to be simulated and
  *   faces is the number of faces on each die (some dice
have more or fewer than 6 faces)
  */
public DiceSimulation(int numSamples, int faces) {

numSampleSize = numSamples;
numFaces = faces;

}

/** Returns an integer from 1 to the number of faces to
simulate a die roll  */
public int roll() {

/* to be implemented in part (a)  */
}

/** Simulates rolling two dice with the number of faces
given, for the number of sample size
  *   rolls. Returns the percentage of matches that were
rolled
  *   as an integer (eg.  0.50 would be  50).
  */
public int runSimulation() {

/* to be implemented in part (b)  */

}
}



The following table contains sample code and the expected
results.

Statements and Expressions Value Returned / Comment
DiceSimulation s1 = new
DiceSimulation(10, 6)

(no value returned) A DiceSimulation
s1 is declared and instantiated.

s1.runSimulation() 10 rolls are simulated; only the
percentage of matches is displayed.
See further explanation below.

The 10 rolls might look like this (nothing is printed at this
time)
Die1: 3 Die2: 4
Die1: 1 Die2: 5

Die1: 2 Die2: 2

Die1: 3 Die2: 4

Die1: 6 Die2: 6

Die1: 3 Die2: 4

Die1: 3 Die2: 3

Die1: 6 Die2: 4
Die1: 3 Die2: 1

Die1: 5 Die2: 5
The percentage the method would return is 40.

(a) Write the roll method to simulate the roll of one die.

/** Returns an integer from 1 to number of faces to simulate a
die roll  */



public int roll()

 

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

Class information for this question

public class DiceSimulation

private int numSampleSize;
private int numFaces;

public DiceSimulation (int numSamples, int
faces)
public int roll()
public int runSimulation()

(b) Write the runSimulation method.

 

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.



Class information for this question

public class DiceSimulation

private int numSampleSize;
private int numFaces;

public DiceSimulation (int numSamples, int
faces)
public int roll()
public int runSimulation()

2. This question involves the implementation of a calorie counter
system that is represented by the CalorieCount class. A
CalorieCount object is created with 5 parameters:

Daily calories limit—the recommended number of calories
per day
Daily calories intake—the number of calories a person has
eaten in a day
Grams of protein per day
Grams of carbohydrate per day
Grams of fat per day

The CalorieCount class provides a constructor and the following
methods:

addMeal—takes in calories, grams of protein, grams of carbs,
and grams of fat from a meal and updates corresponding
instance fields

getProteinPercentage—returns the percent of protein in a
given day (4 * grams protein / daily calorie intake)



onTrack—returns true if the calorie intake does not exceed
the daily calories limit, otherwise returns false

The following table contains sample code and the expected
results.

Statements and
Expressions

Value
Returned

(blank if no
value)

Comment

CalorieCount sunday =
new
CalorieCount(1500);

Creates an instance with a
1500-calorie limit

sunday.addMeal(716, 38,
38, 45);

Adds 716 calories, 38
grams of protein, 38 grams
of carbs, 45 grams of fat to
the appropriate instance
fields

sunday.addMeal(230, 16,
8, 16);

Adds 230 calories, 16
grams of protein, 8 grams
of carbs, 16 grams of fat to
the appropriate instance
fields

sunday.addMeal(568, 38,
50, 24);

Adds 568 calories, 38
grams of protein, 50 grams
of carbs, 24 grams of fat to
the appropriate instance
fields

onTrack() false Returns true if calorie
intake does not exceed
calorie limit



getProteinPercentage() 0.24 Multiplies grams of protein
by 4 and then divides by
calorie intake

Write the entire CalorieCount class. Your implementation must
meet all specifications and conform to all examples.

 

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

3. This question involves the implementation of a travel planner
system that is represented by the TravelPlan and Tour classes.
A client will create Tour objects that will represent tours or
activities of interest. Each Tour object is made up of an activity
date, start time, end time, and name of the activity. The client will
also create a TravelPlan object comprised of a destination and
an ArrayList of Tours.

A partial declaration of the Tour class is shown below.

public class Tour {
private int actDate;
private int startTime; // times are represented in
military format
private int endTime;     // 1430 for 2:30 pm
private String activity;

/*   Constructs a Tour
  *     All instance fields are initialized from parameters
  */



Tour(int actDate, int startTime, int endTime, String
activity)
{
/*   implementation not shown
}
public int getActDate() {return actDate;}
public int getStartTime() {return startTime;}
public int getEndTime() {return endTime;}
public String getActivity() {return activity;}

A partial declaration of the TravelPlan class is shown below.

import java.util.ArrayList;

public class TravelPlan {
private String destination;
private ArrayList <Tour> plans;

/*   Constructs a TravelPlan
  *     All instance fields are initialized from parameters
  */

TravelPlan(String destination)
{
/*   to be implemented in part (a)    */
}

/*   Returns true if the timeframe overlaps with another Tour in
plans;
  *   otherwise  false
  */

public boolean checkForConflicts(Tour t)
{
/*   to be implemented in part (b)    */
}

/* Calls checkForConflicts, if checkForConflicts returns
false
  *   (the timeframe does not overlap), adds the tour to  plans,
returns  true



  *   otherwise returns  false
  *   Must call  checkForConflicts for full credit
  */

public boolean addTour(Tour t)
{
/*   to be implemented in part (c)    */
}

The following table contains sample code and the expected
results.

Statements and
Expressions

Value
Returned
(blank if no
value)

Comment

TravelPlan p1 = new
TravelPlan(“Capetown”);

Creates an instance
with a destination
“CapeTown” and an
empty ArrayList of
type Tour

Tour t1 = new Tour(1312020,
800, 1230, “Bungee
jumping”);

Creates a Tour
instance with date,
start time, end time,
and activity

Tour t2 = new Tour(1312020,
900, 1430, “Body surfing”);

Creates a Tour
instance with date,
start time, end time,
and activity

p1.add(t1) true Checks for conflicts
in plans; since there
are none, adds the



Tour object, returns
true

p1.add(t2) false Checks for conflicts
in plans; since there
is a conflict, returns
false

Tour t3 = new Tour(2012020,
900, 1200, “Shark cage
diving”);

Creates a Tour
instance with date,
start time, end time,
and activity

p1.add(t3) true Checks for conflicts
in plans; since there
are none, adds the
Tour object, returns
true

(a) Write the TravelPlan constructor. The constructor should
initialize the destination and the plans ArrayList.

 

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

Class information for this question

public class Tour
private int actDate



private int startTime
private int endTime
private String activity

Tour(int actDate, int startTime, int endTime,
String activity)
public int getActDate()
public int getStartTime()
public int getEndTime()
public String getActivity()

public class TravelPlan
private String destination;
private ArrayList <Tour> plans;

public TravelPlan(String destination)
public boolean addTour(Tour t)
public boolean checkForConflicts(Tour t)

(b) Write the TravelPlan checkForConflicts method.

 

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

Class information for this question

public class Tour
private int actDate
private int startTime
private int endTime
private String activity



Tour(int actDate, int startTime, int endTime,
String activity)
public int getActDate()
public int getStartTime()
public int getEndTime()
public String getActivity()

public class TravelPlan
private String destination;
private ArrayList <Tour> plans;

public TravelPlan(String destination)
public boolean addTour(Tour t)
public boolean checkForConflicts(Tour t)

(c) Write the addTour method.

 

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

Class information for this question

public class Tour
private int actDate
private int startTime
private int endTime
private String activity

Tour(int actDate, int startTime, int endTime,
String activity)
public int getActDate()



public int getStartTime()
public int getEndTime()
public String getActivity()

public class TravelPlan
private String destination;
private ArrayList <Tour> plans;

public TravelPlan(String destination)
public boolean addTour(Tour t)
public boolean checkForConflicts(Tour t)

4. This question involves the implementation of a class seating
chart. A SeatingChart object will represent a two-dimensional
string array. The number of rows and columns for the array will
be sent as parameters, as well as a one-dimensional array of
type Name. You may assume there will be enough rows and
columns to accommodate all the entries from the array.

The declaration of the Name class is shown.

public class Name
{

private String lastName;
private String firstName;

Name(String lName, String fName){<implementation not
shown>}
public String getLastName() {return lastName;}
public String getFirstName() {return firstName;}

)

A partial declaration of the SeatingChart class is shown below.

public class SeatingChart {
private String [][] chart;



/**   Constructs a  SeatingChart having  r rows and  c
columns. All elements contained in the
  *     names array should be placed randomly in the  chart array
using the format:
  *     lastName, firstName (e.g. Jolie, Angelina).
  *     Any locations not used in the chart should be
  *     initialized to the empty string.
*/

SeatingChart(Name[] names, int rows, int cols){

/*   to be implemented in part (a)    */

}

/**   Returns a string containing all elements of the  chart
array in row-major order.
  *     The method should return a string containing all the
elements in the  chart array.
  *     The method  padWithSpaces should be called on each
  *     element of the chart before it is added to the string to
ensure each name will be
  *     printed with the same length.
  *     Each row of the chart should be separated by a line break.
*/

public String toString() {

/*   to be implemented in part (b)    */

}

/** Pads a string with spaces to ensure each string is exactly
35 characters long.  */

private String padWithSpaces(String s) {
String str = s;
for (int a = s.length(); a < 35; a++) {

str += “ ”;
}



return str;
}

}

The following table contains sample code and the expected
results.

Statements and Expressions Value Returned /
Comment

SeatingChart msJones = new
SeatingChart(theNames, 4, 3);

(no value returned) A two-
dimensional array is
initialized with 4 rows and
3 columns. Every element
in theNames is placed
randomly in the chart in
the following format:
lastname, firstname (e.g.,
Washington, George).
Empty string is placed in
any unused locations.

System.out.println(msJones.toString); Prints the names in the
chart in row-major order.
See example below:

Miller, Minnie
Indigo, Inde
Titon, Tim
Georgian, Greg

Fitzgerald, Fred
Banner, Boris
Robilard, Robbie

Dade, Ali    
Lane, Lois
Brne, Jane

(a) Write the SeatingChart constructor.

 



Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.

Class information for this question

public class Name
private String lastName;
private String firstName;

Name(String lName, String fName)
public String getLastName() {return
lastName;}
public String getFirstName() {return
firstName;}

public class SeatingChart
private String [][] chart;

SeatingChart(Name[] names, int rows, int
cols)
public String toString()
private String padWithSpaces(String s)

(b) Write the SeatingChart toString() method.

 

Begin your response at the top of a new page in the separate
Free Response booklet and fill in the appropriate circle at the
top of each page to indicate the question number. If there are
multiple parts to this question, write the part letter with your

response.



Class information for this question

public class Name
private String lastName;
private String firstName;

Name(String lName, String fName)
public String getLastName() {return
lastName;}
public String getFirstName() {return
firstName;)

public class SeatingChart
private String [][] chart;

SeatingChart(Name[] names, int rows, int
cols)
public String toString()
private String padWithSpaces(String s)

STOP

END OF EXAM



Practice Test 1: Diagnostic Answer
Key and Explanations
Click here to download a PDF of Diagnostic Answer Key Step 1.



PRACTICE TEST 1: DIAGNOSTIC
ANSWER KEY
Let’s take a look at how you did on Practice Test 1. Follow the three-
step process in the diagnostic answer key below and read the
explanations for any questions you got wrong, or you struggled with
but got correct. Once you finish working through the answer key and
the explanations, go to the next chapter to make your study plan.

Check your answers.

Section I: Multiple Choice
Q # Ans. Chapter #, Title

1 E 3, Objects & Primitive Data

2 D 3, Objects & Primitive Data
4, The Math Class

3 D 4, The String Class

4 A 4, The String Class
3, Objects & Primitive Data

5 C 4, The String Class

6 E 4, The String Class
3, Objects & Primitive Data

7 B 5, The If Statement

8 A 5, The If Statement
4, The String Class

9 E 5, The If Statement
10 C 5, The If Statement



11 C 6, The While Statement
12 D 6, The For Statement

13 A 6, The For Statement
5, The If Statement

14 C 3, Objects & Primitive Data
6, The For Statement

15 B 6, The For Statement

16 B 6, The While Statement
4, The String Class

17 D 6, The For Statement
18 C 7, Composition
19 B 7, Composition
20 D 7, Design & Structure
21 B 8, Primitives & Objects
22 E 8, Primitives & Objects
23 B 8, Primitives & Objects
24 D 8, Searches
25 A 8, Primitives & Objects
26 C 8, Primitives & Objects
27 E 9, Lists & ArrayLists
28 A 9, Lists & ArrayLists
29 B 6, Lists & ArrayLists
30 D 9, Lists & ArrayLists
31 D 10, 2D Arrays
32 B 10, 2D Arrays



33 B 11, Lists & ArrayLists
34 D 11, Lists & ArrayLists
35 C 11, Lists & ArrayLists
36 D 11, Lists & ArrayLists
37 E 11, Lists & ArrayLists
38 E 12, Recursion
39 D 12, Recursion
40 A 12, Recursively Traversing Arrays

Section II: Free-Response
Q # Ans. Chapter #, Title
1a See Explanation 4, The Math Class

1b See Explanation
6, The For Statement
5, The If Statement
4, The Math Class

2 See Explanation 7, Design & Structure
3, Objects & Primitive Data

3a See Explanation 9, Lists & ArrayLists
7, Design & Structure

3b See Explanation
9, Lists & ArrayLists
5, The If Statement
7, Methods

3c See Explanation 9, Lists & ArrayLists
7, Methods

4a See Explanation
10, 2D Arrays
8, Primitives & Objects
3, Objects & Primitive Data



4b See Explanation 10, 2D Arrays



Tally your correct answers from Step 1 by
chapter. For each chapter, write the number of
correct answers in the appropriate box. Then,
divide your correct answers by the number of
total questions (which we’ve provided) to get
your percent correct.
CHAPTER 3 TEST SELF-EVALUATION

CHAPTER 4 TEST SELF-EVALUATION

CHAPTER 5 TEST SELF-EVALUATION



CHAPTER 6 TEST SELF-EVALUATION

CHAPTER 7 TEST SELF-EVALUATION

CHAPTER 8 TEST SELF-EVALUATION

CHAPTER 9 TEST SELF-EVALUATION



CHAPTER 10 TEST SELF-EVALUATION

CHAPTER 11 TEST SELF-EVALUATION

CHAPTER 12 TEST SELF-EVALUATION



Use the results above to customize your study
plan. You may want to start with, or give more
attention to, the chapters with the lowest
percents correct.



PRACTICE TEST 1 EXPLANATIONS
Section I: Multiple-Choice Questions
1. E

Modulus division and division have the same order of
precedence. Going from left to right, modulus (%) is first: 6 % 12
is 6. Division (/) is next and will be handled as integer division,
since both terms of the operation are integers: 6 / 4 is 1. Finally,
do the addition: 4 + 1 = 5. The correct answer is (E).

2. D

Anytime a double data type is used in an operation, the result
will yield a double. In (A) (1.0 * 2), (B) (2.0), and (C) ((double)
2), the numerators are all 2.0. Choice (E) also yields 2.0, since
the Math.sqrt method returns a double. Choice (D) attempts to
cast to double too late. The expression inside the parentheses
(2 / 10) yields 0 before it can be cast to a double.

3. D

First off, every string literal will be enclosed in quotation marks
(“”). Next, to print a character that serves as a control character
with specific meanings in Java, characters like \, “, or n to
indicate a new line, each character will have to be preceded by
its own \. Thus, to print “Friends”, each “ that’s printed will
require its own \. Choices (A), (B), and (C) are missing the
backslashes. Choice (E) has too many backslashes and will
give a compiler error. Choice (D) is the correct answer because
a backslash is used to indicate each control break.

4. A



The String class is immutable. Without additional assignment
statements to change the values of animal1 and animal2, they
will retain the values assigned in the first two lines.

5. C

Choices (B), (D), and (E) all pass String, String, int, int as
arguments to the second Constellation constructor. Choice (A)
passes two strings to the first constructor. Choice (C) is the
correct answer, as a double cannot be passed to a parameter of
type int because there may be a loss of precision.

6. E

Segments I and II will use an int parameter to update the
instance field(s) of type int. Segment III will cast the double to
int before updating the instance field of type int. There may be
a loss of precision, but it would be a logic error, not a compiler
error. The correct answer is (E), as all options will compile
correctly.

7. B

Trace the code:

int x = 10;
int y = 5;

if (x == 10)                   //x is 10 so follow this branch
{

if (y <= 5)       //y is 5 so follow this branch, add 1 to
y, it is now 6

y++;
else if (y < 4)

x = 3;
else



y += 6;
}                                       //the first if statement is complete
if (y > 5)                     //y is 6, so follow this branch
{

if (x != 10)     //x is 10, so skip to the else
{

x = 0;
y = 0;

}
else                     //follow this branch, assign –5 to x

x = -5;
}

      //Thus, x = –5 and y = 6

The correct answer is (B).

8. A

The rules of compareTo are as follows: if
string1.compareTo(string2) < 0, then the strings are in
lexicographical order, whereas if string1.compareTo(string2) >
0, then the strings are in reversed order.

1 String word1 = “frog”;
2 String word2 = “dog”;
3 String word3 = “cat”;
4
5 if (word1.compareTo(word2) < 0)     //frog does not come before
dog, skip to the else

6  if (word2.compareTo(word3) < 0)
7  System.out.println(word1 + “ ” + word2 + “ ” + word3);
8  else
9  System.out.println(word1 + “ ” + word3 + “ ” + word2);
10 else                                                           //skip to here
11  if (word1.compareTo(word2) > 0) //frog comes after dog, so
follow this branch



12  if (word2.compareTo(word3) < 0) //dog does not precede
cat, skip to the else

13  System.out.println(word1 + “ ” + word2 + “ ” + word3);
14  else
15  System.out.println(word1 + “ ” + word3 + “ ” + word2);
//frog cat dog

16  else
17  if (word2.equals(word3))
18  System.out.println(“all the words are the same”);
19  else
20  System.out.println(“word1 and word2 are duplicates”);

The correct answer is (A).

9. E

The following is given: temp = 90 and cloudy = false. Segment I
is evaluated as true: temp >= 90 (true) && !cloudy(true).
Both sides of the && are true, so the entire condition is true.
Option II is evaluated as true: De Morgan’s Law can be used to
simplify the !(). The simplified version is temp <= 90 && !cloudy
—which are both true, so the entire condition is true. Segment III
is also evaluated as true. Again, De Morgan’s Law can be used
to simplify the !(). The simplified version is temp <= 90 ||
cloudy. Since the temp is 90, the first condition is true. By short-
circuit, the entire condition is true. The correct answer is (E).

10. C

Line 3 assigns dog2’s object reference to dog1. These two object
variables are now pointing at the same object, the contents of
which is “Beagle”. Thus, the result of if (dog1 == dog2) on line
6 is true. Line 4 creates another object whose contents are
“Beagle”. Thus, the result of if (dog1 == dog3) on line 11 is
false. The == is comparing whether the variables refer to the
same object, not whether the content of the objects is the same.



The result of if (dog1.equals(dog3)) on line 16 is true. The
method .equals compares the contents of the two objects: they
both contain “Beagle”. The correct answer is (C).

11. C

Choice (A) starts at 0 and will decrement to a negative index,
causing an out of bounds exception. Choices (B) and (D) start
the index at str1.length, which is out of bounds. The last
character in a string should be referenced by length - 1. Choice
(E) correctly starts at length - 1; however, the loop only
continues while the index is greater than 0, missing the first
character of str1. The correct answer is (C).

12. D

Analytical problems of this type are more easily solved by
selecting a value and testing the results. In this case, substitute
a small number such as 3 for n, and then trace the code. The
outer loop executes from 1 to 2, which is 2 times. The inner loop
will execute from 1 to 3, which is 3 times. The code inside the
loops is simply counting by 1. The inner loop will be executed (2
times 3) 6 times, thereby adding 6 to count.

Now, substitute 3 for n in all the possible answers.

Expression Result
(A) 33 27

(B) 32 – 1 8

(C) (3 – 1)2 4

(D) 3(3 – 1) 6

(E) 32 9



Thus, the answer to this problem is (D), n(n - 1). Analytically,
you could have looked at the first loop processing from 1 to n –
1 and the second loop processing from 1 to n, and made the
same assessment.

13. A

Choice (E) is eliminated with short-circuit. Line 4 looks to
determine whether x != 0, but it IS 0, so logic immediately
branches to the else statement on line 7. Variable x is initialized
to 0, and j is initialized to 1, so line 7 multiplies j (1) times x (0)
= 0 and prints the result. This eliminates (C) and (D). Both (A)
and (B) are all zeroes, so the question becomes, how many 0s
will be printed? Line 2 specifies j will start at 1 and end at 3, thus
printing three 0s. The correct answer is (A).

14. C

The loop located at lines 4–7 prints symbol (*) 5 times.

Line 8 is a control break to the next line.

The loop located at lines 9–16 is executed 5 times. The loop
within at lines 11–14 prints 5 – j spaces, so the first time through
it will print 4 spaces, next time 3 spaces, and so on. (Note: this
eliminates all answers except for (C).) After the spaces are
printed on each line, a single symbol (*) is printed with println
(which will then move to the next line).

The loop at 17–20 is the same as the first loop, printing symbol (*)
5 times. The correct answer is (C).

15. B

i will have only the value 1, j will range from 1 to 3, and k will
range from 1 to 3. The three variables will be multiplied by each



other and then added to the sum. The results will look like this:

i * j * k
1 * 1 * 1 = 1
1 * 1 * 2 = 2
1 * 1 * 3 = 3
1 * 2 * 1 = 2
1 * 2 * 2 = 4
1 * 2 * 3 = 6
1 * 3 * 1 = 3
1 * 3 * 2 = 6
1 * 3 * 3 = 9                       The sum of which is 36.

The correct answer is (B).

16. B

The substring() method has two parameters. The first specifies
where to start, the second how far to go (up to but NOT
including).

The outer loop at lines 3–12 is controlled by j. j starts off at 0,
eventually ending at 2.

The inner loop at lines 5–10 is controlled by k. k starts off at 3
and will execute as long as it is greater than j.

The first time through the outer loop the following will be printed:

s.substring(0, 3)         prints map
s.substring(0, 2)         prints ma
s.substring(0, 1)         prints m

The second time through the outer loop the following will be
printed:

s.substring(1, 3)         prints ap
s.substring(1, 2)         prints a

The final time through the outer loop the following will be printed:



s.substring(2, 3)         prints p

The correct answer is (B).

17. D

Once again, it is helpful to choose a value for n to analyze the
code. Choosing 3 for n, analyze the code.

I—Each time through the loop, factorial will be multiplied by 3.
This does not follow the definition of a factorial. Eliminate (A)
and (E), which include I.

II—The loop is controlled by j, which will range from 1 to n, in
this case 3. Each time through the loop, factorial is multiplied by
j, thereby producing a result of 1 × 2 × 3, which is correct.
Eliminate (C).

III—A recursive solution that sends n (3) to the function
First pass is f(3) -> 3 * f(2)
Second pass is f(2) -> 2 * f(1)
Final pass is f(1) -> 1 3 × 2 × 1 will yield 6 as
expected. Eliminate (B).

The correct answer is (D), as only II and III will work.

18. C

When a local variable is created, it is used instead of the
instance variable. When the constructor is invoked, line 28 does
not update the instance variable price. Without specifying
this.price = price, the local parameter is assigned the same
value it already holds. Thus, (D) and (E) are eliminated. Choice
(A) is eliminated because the toString method has been
defined in the Tile class to print the instance variables (not the
object reference). The chgMaterial(mat) method at line 30 also



updates a local variable rather than the instance variable,
eliminating (B). The correct answer is (C).

19. B

If a print statement is passed an object, its toString() method
will be invoked. This eliminates all answers except (B), which is
the correct answer.

20. D

A static variable would be used for something that would belong
to the entire class. Since inventory needs to exist for each style,
it cannot be static, but it must be an instance of the class,
eliminating (A) and (B). Choice (C) is eliminated because the
keyword final is used only for constants that do not change
value, but the owner has also asked for a method to change the
value. Since styleNumber is an instance field, it implies that a
separate instance is created for each style. Thus an array is not
needed, eliminating (E). The correct answer is (D).

21. B

The array is initialized as {11, 22, 33, 44, 55, 66};

First pass: nums[nums[0] / 11] = nums[0];
nums[11 / 11] = nums[0];
nums[1] = nums[0];       The array is now: {11, 11,
33, 44, 55, 66};

Second pass: nums[nums[1] / 11] = nums[1];
nums[11 / 11] = nums[1];
nums[1] = nums[1];         The array is unchanged:
{11, 11, 33, 44, 55, 66};

Third pass: nums[nums[2] / 11] = nums[2];



nums[33 / 11] = nums[2];
nums[3] = nums[2];       The array is now: {11, 11,
33, 33, 55, 66};

Fourth pass: nums[nums[3] / 11] = nums[3];
nums[33 / 11] = nums[3];
nums[3] = nums[3];         The array is unchanged:
{11, 11, 33, 33, 55, 66};

Fifth pass: nums[nums[4] / 11] = nums[4];
nums[55 / 11] = nums[4];
nums[5] = nums[4];       The array is now: {11, 11,
33, 33, 55, 55};

Sixth pass: nums[nums[5] / 11] = nums[5];
nums[55 / 11] = nums[5];
nums[5] = nums[5];       The array is unchanged:
{11, 11, 33, 33, 55, 55};

The correct answer is (B).

22. E

Line 14 assigns the arr1 object reference to arr2 object
reference. Thus, both variables are now pointing to the exact
same array in memory.

The loop at lines 17–18 is the only code that modifies the array.

both arr1 and arr2: {1, 2, 3, 4, 5, 6}; last = 5

arr2[i] = arr1[last - i];
first pass: arr2[0] = arr1[5 - 0]; {6, 2, 3, 4, 5, 6}
second pass: arr2[1] = arr1[5 - 1]; {6, 5, 3, 4, 5, 6}
third pass: arr2[2] = arr1[5 - 2]; {6, 5, 4, 4, 5, 6}
fourth pass: arr2[3] = arr1[5 - 3]; {6, 5, 4, 4, 5, 6}
fifth pass: arr2[4] = arr1[5 - 4]; {6, 5, 4, 4, 5, 6}
last pass: arr2[5] = arr1[5 - 5]; {6, 5, 4, 4, 5, 6}



The correct answer is (E).

23. B

The for loop on line 29 creates a local variable named element
which will hold each value of arr3 without having to use an
index. Modifying this local variable does not modify the
individual contents within the array. The loop multiplies each
element by 2, printing it as it does so.

2, 4, 6, 8, 10, 12

The loop at line 36 prints the contents of the array, which remain
unchanged:

1, 2, 3, 4, 5, 6

The correct answer is (B).

24. D

Since index i is assigned to variables a and b, it is locations that
are being printed. This eliminates (A). Scan the remaining
answers and make a chart to help you understand the
possibilities.

Location of: Location of:
(B) Smallest integer Largest integer
(C) Smallest non-negative

integer
Largest non-negative
integer

(D) Smallest integer Largest non-negative
integer

(E) Smallest non-negative Largest integer



integer

The variable holdSmallest is initialized with Integer.MAX_ VALUE,
which is the largest integer an int field may hold. Thus, the code
will work to find the smallest number in the array even if it is a
negative number. This eliminates (C) and (E). The variable
holdLargest is initialized to 0, so when looking for a larger
integer, it will only be replaced if it is larger than 0, or in other
words, a non-negative integer. This eliminates (B). The correct
answer is (D).

25. A

Choice (B) is eliminated because there is no increment to
variable i. Choice (C) is eliminated because without an index, it
implies the entire array (not each element) is being added to sum
over and over. Choice (D) cannot use element, because it will
contain the contents of a location within the array, rather than a
location. Choice (E) uses the variable name of the array as the
index. Choice (A) is correct because it uses the temporary
variable element, which will actually hold the contents of each
location within the array.

26. C

Examining the code of swap1, you can see it will work only if the
arrays are the same length. There is no accommodation for one
array being longer than the other. In fact, if a1 is longer, there will
be an out of bounds error on the second array. This eliminates
(A), (D), and (E). The code of swap2 does not work. Array
variables hold a reference to the array, not to the actual
elements. This eliminates (B). The correct answer is (C).

27. E



Segment I declares an ArrayList of type String and then adds
“4.5”, which is a String. It is correct. Eliminate (D), which does
not include I.

Segment II declares an ArrayList of type Integer and then
casts 4.5 to an int before adding it to the ArrayList, which is
acceptable. It is correct. Eliminate (A) and (C).

Segment III declares an ArrayList variable and then completes
the declaration of the ArrayList as type double on the next line.
It then adds a double to the ArrayList, which is correct.
Eliminate (B).

The correct answer is (E).

28. A

The first loop loads the contents of the array into the ArrayList.
The next loop begins to remove elements if those elements are
even. The loop will continue to run until it reaches the size of the
ArrayList. As elements of the ArrayList are removed, the size
will decrease, so there is no risk of going out of bounds.
Eliminate (E). However, the index i will occasionally skip
elements because of the renumbering that takes place.

[2, 4, 6, 7, 8, 10, 11];

i = 0 The 2 is even, so it is removed; the array is now

[4, 6, 7, 8, 10, 11];

i = 1 Notice the 4 will now be skipped. The 6 is even, so it is
removed; the array is now

[4, 7, 8, 10, 11];



i = 2 The 8 is even, so it is removed; the array is now

[4, 7, 10, 11];

i = 3 The 10 has been skipped. The 11 is odd, so the array stays
the same:

[4, 7, 10, 11];

The correct answer is (A).

29. B

The size of the array is 5, so size – 1 is 4. The outer loop
executes 4 times (0–3).

size – 2 is 3. The inner loop executes 3 times (0–2).

Since line 12 is executed every time the inner loop is executed, it
will be executed (4)(3) = 12 times. The correct answer is (B).

30. D

The inner loop does not go far enough to process the entire
array. size is 5, and size – 1 is 4, so the index can only be less
than 4, stopping at index 3. The last entry in the ArrayList will
never be sorted. The sort makes 4 passes through the
ArrayList. The passes will look as follows:

0       [6, 21, 2, 8, 1]

1       [6, 2, 21, 8, 1]

2       [6, 2, 8, 21, 1]

3       [2, 6, 8, 21, 1]



The correct answer is (D).

31. D

The array is printed in column-major order. The outer loop runs
from 0 to row length – 1 (the number of columns). The inner loop
runs from 0 to the length of the array (which means the number
of rows).

The original array is

1   2   3   4

5   6   7   8

The outer loop starts with column 0, prints [0] [0]: 1   [1] [0]:
5

The outer loop increments to column 1 [0] [1]: 2   [1] [1]: 6

The outer loop increments to column 2 [0] [2]: 3   [1] [2]: 7

The outer loop increments to column 3 [0] [3]: 4   [1] [3]: 8

The correct answer is (D).

32. B

Segment III will go out of bounds. The r (rows) will iterate as
many times as there are columns. If there are fewer rows than
columns, the index will go out of bounds. The correct answer is
(B).

33. B



Since name and weight are instance variables in the Percussion
class, values for those variables should be passed while calling
super. The call to super must be the first line in a method. Thus,
(A), (D), and (E) are eliminated. The assignment statement of
numberOfKeys is reversed in (C). The local variable is being
initialized by the instance field. The correct answer is (B).

34. D

The variable numberOfKeys is not visible outside the Xylophone
class. Choices (A) and (B) are simply creating arrays of
Xylophone objects. Choice (C) creates a xylophone object and
then uses the proper accessor method to print the number of
keys. Choice (E) declares a variable for an array of type Drums.
Choice (D) attempts to print a private instance variable without
using an accessor method. It will not comply, so the correct
answer is (D).

35. C

The accessor method getWeight() will return the weight of each
instance so that they can be compared. Choice (A) is incorrect
because the weight field is not visible. Choice (B) is not correct
because weight() is not a defined method. Choice (D) is not
correct because not only is weight not visible, but .equals is not
used to compare primitive types. Choice (E) is incorrect
because (C) compares the fields correctly. The correct answer
is (C).

36. D

Use the IS-A relationship to check the solutions:

(A)—SportingDog is a Dog (yes)



(B)—Retriever is a Dog (yes)

(C)—Retriever is a Sporting Dog (yes)

(D)—Dog is a Sporting Dog (no, the relationship is the opposite:
not all dogs are sporting dogs)

(E)—Retriever is a Retriever (yes)

The correct answer is (D).

37. E

The Retriever toString() method is invoked first, returning
type: Labrador + super.toString().

No toString() method is found in SportingDog, but a toString()
method is found in Dog, adding color is: chocolate to the print
line.

The correct answer is (E).

38. E

Try substituting numbers for the variables. Try finding 32 by
making b = 3, x = 2. The solution is found by multiplying 3 × 3.

The base case will be 3 (when the exponent is 1). This should
imply that the if statement at line 3 should be

if (x == 1)     return b;

There is another error on line 6. Line 6 is using addition, when
raising to a power is multiplying the base x times. Thus, the +
sign should be changed to multiplication.

After making the changes in the code, it is advisable to test it to
ensure it works:



b = 3, x = 2

1 public double pow(double b, int x)
2 {
3 if (x == 1)
4  return b;
5 else
6  return b * pow(b, x - 1);
7 }

f(3, 2)
|    

3 * pow(3, 1)
    |
    3

3 * 3 = 9

The correct answer is (E).

39. D

It is best to walk the code.

System.out.println(f(8765));
public static int f(int n)
{

if (n == 0)
return 0;

else
return f(n / 10) + n % 10;

}

              f(8765)
              |

            f(876) + 5
  |

f(87) + 6      
|              

f(8) + 7                    



|                          
0 + 8                          

8 + 7 + 6 + 5 = 26

The correct answer is (D).

40. A

If sought is less than the element at index mid, the beginning of
the array should be searched. The location of the middle of the
array, mid – 1, should be assigned to last. If sought is greater
than the element at index mid, mid + 1 should be assigned to
first so that the latter half of the array can be searched. This
process should be repeated until sought is found. The correct
answer is (A).

Section II: Free-Response Questions
1. DiceSimulation—Canonical Solution

  (a) public int roll() {

return (int)(Math.random() * numFaces + 1);
}

  (b) public int runSimulation()
{
int die1 = 0;
int die2 = 0;
int countDouble = 0;
for (int i = 0; i < numSampleSize; i++) {

die1 = roll();
die2 = roll();
if (die1 == die2) {

countDouble++;



}
}
return (int)((1.0 * countDouble / numSampleSize) * 100);
}

DiceSimulation Rubric
Part (a)

+3 roll method
+1 Math.random() or the Random class is used
+1 multiplied by numFaces + 1

+1 result of computation is cast to int
appropriately and returned

Part (b)

+6 runSimulation method
+1 local variables are declared and initialized

for the two dice
+1 roll is used to give the dice values
+1 a loop is used to execute sample size times

(no more, no less)

+1 the values of die1 and die2 are compared
with ==, doubles are counted appropriately

+1 the percentage of doubles is calculated
(avoiding integer division), multiplied by 100

+1 percentage is returned as an int

2. CalorieCount—Canonical Solution

public class CalorieCount {
private int numCaloriesLimit;
private int numCaloriesIntake;



private int gramsProtein;
private int gramsCarbohydrate;
private int gramsFat;

public CalorieCount (int numCal) {
numCaloriesLimit = numCal;
numCaloriesIntake = 0;
gramsProtein = 0;
gramsCarbohydrate = 0;
gramsFat = 0;

}
public void addMeal(int calories, int protein, int
carbs, int fat) {

numCaloriesIntake += calories;
gramsProtein += protein;
gramsCarbohydrate += carbs;
gramsFat += fat;

}
public double getProteinPercentage() {

return 4.0 * gramsProtein / numCaloriesIntake;
}
public boolean onTrack() {

return numCaloriesIntake <= numCaloriesLimit;
}

}

CalorieCount Rubric
+1 Declares all appropriate private instance variables
+2 Constructor

+1 declares header: public CalorieCount (int
calorieLimit)

+1 uses parameters and appropriate values to
initialize instance variables

+2 addMeal method
+1 declares header: public void addMeal(int

calories, int protein, int carbs, int fat)



+1 updates instance variables appropriately
+2 getProteinPercentage method

+1 declares header: public double
getProteinPercentage()

+1 calculation and return: return 4.0 *
gramsProtein / numCaloriesIntake;

+2 onTrack method
+1 declares header: public boolean onTrack()
+1 correctly returns true or false

e.g., return numCaloriesIntake <=
numCaloriesLimit;

3.

  (a) TravelPlan(String destination){
this.destination = destination;
plans = new ArrayList<Tour>();

}

  (b) public boolean checkForConflicts(Tour t) {
for (int i = 0; i < plans.size(); i++)
{

if (t.getActDate() == plans.get(i).getActDate())
{

int plannedStart =
plans.get(i).getStartTime();
int plannedEnd = plans.get(i).getEndTime();
if ((t.getStartTime() >= plannedStart &&
t.getStartTime() < plannedEnd) ||
(t.getEndTime() > plannedStart &&
t.getEndTime() < plannedEnd))

return true;
if (t.getStartTime() <= plannedStart &&
t.getEndTime() >= plannedEnd)

return true;



}
}
return false;

}

  (c) public boolean String addTour(Tour t) {
if (checkForConflicts(t)) {

return false;
}
plans.add(t);
return true;

}

TravelPlan Rubric
Part (a)

+3 Constructor
+1 constructor uses class name TravelPlan

+1 updates destination instance field
appropriately (uses this.)

+1 creates ArrayList appropriately
Part (b)

+4 checkForConflicts method
+1 uses a loop to traverse every item in the

ArrayList (no bounds errors)

+1 uses .get(index) to access the object in the
ArrayList

+1 uses getStartTime () and getEndTime() to
access the private fields in the Tour object

+1 uses appropriate logic to determine whether
there is a time conflict on the same day;
returns true if there is a conflict, false
otherwise



Part (c)

+2 addTour method
+1 calls checkForConflict method to determine

whether there is a conflict (loses this point if
it instead writes the logic to determine
whether there is a conflict in this method),
adds tour if there is no conflict

+1 returns true if tour is added, or false if tour
is not added

4. SeatingChart—Canonical Solution

  (a) SeatingChart(Name[] names, int r, int c)
{

chart = new String[r][c];
for (int i = 0; i < chart.length; i++)
{

for (int j = 0; j < chart[0].length; j++)
{

chart[i][j] = “”;
}

}
int count = 0;
int i = (int) (Math.random() * names.length);
int row = i / c;
int col = i % c;
while (count < names.length) {

while (!chart[row][col].equals(“”))
{

i = (int) (Math.random() * names.length);
row = i / c;
col = i % c;

}
chart[row][col]= names[count].getLastName() + “,
” +

names[count].getFirstName();



count ++;
}

}

  (b) public String toString()
{

String str = “”;
for (int a = 0; a < chart.length; a++) {

for (int b = 0; b < chart[a].length; b++) {
str += padWithSpaces(chart[a][b]);

}
str += “\n”;

}
return str;

}

SeatingChart Rubric
Part (a)

+6 Constructor
+1 chart is initialized using rows and columns

passed in parameters
+1 random numbers are generated in the

correct range
+1 a unique random number is used each time

to place the name in the 2D array (duplicate
names are avoided) and all names are
placed (none are skipped)

+1 row and column in the seating chart are
derived properly from the random number

+1 the name is stored in chart as a string (last
name, (comma), first name), e.g.,
Washington, George



+1 any unused spaces left in the array should
be initialized to the empty string (not null)

Part (b)

+3 toString method
+1 builds a single string with all names from the

2D array, calling padWithSpaces to make all
names an equal length

+1 “\n” creates a line break after each row
+1 returns a string



HOW TO SCORE PRACTICE TEST 1
Click here to download a PDF of How to Score Practice Test 1.


