
AP Computer Science A Practice Exam 1

Multiple-Choice Questions

ANSWER SHEET

AP Computer Science A Practice Exam 1

Part I (Multiple Choice)

Time: 90 minutes
Number of questions: 40
Percent of total score: 50

Directions: Choose the best answer for each problem. Use available
space for scratch work and hand tracing. Some problems take longer
than others. Consider how much time you have left before spending
too much time on any one problem.

Notes:
• You may assume all import statements have been included where
they are needed.

• You may assume that the parameters in method calls are not null
and the methods are called when their preconditions are met.

• You may assume that declarations of variables and methods
appear within the context of an enclosing class.

• You may refer to the Java Quick Reference sheet as needed.

1. Consider the following code segment.

What is printed as a result of executing the code segment?
(A) 9
(B) 10

(C) 7
(D) 30
(E) 21

2. Assume that a, b, and c have been declared and correctly
initialized with int values. Consider the following expression.
boolean bool = !(a < b || b <= c) && !(a < c || b >= a);

Under what conditions does bool evaluate to true?
(A) a = 1, b = 2, c = 3
(B) a = 3, b = 2, c = 1
(C) a = 3, b = 1, c = 2
(D) All conditions; bool is always true.
(E) No conditions; bool is always false.

3. Consider the following code segment.

What values are stored in myArray after executing the code
segment?
(A) {2, 3, 4, 1, 7, 6, 8}
(B) {2, 3, 4, 1, 7, 9, 11}
(C) {5, 6, 7, 4, 7, 9, 8}
(D) {5, 6, 7, 4, 7, 6, 8}
(E) {5, 6, 7, 4, 0, 9, 11}

4. Consider the following class used by a company to represent the
items it has available for online purchase.

The company bills at the end of the quarter. Until then, it uses an
ArrayList of OnlinePurchaseItem objects to track a customer's
purchases.
private ArrayList<OnlinePurchaseItem> items;

The company decides to offer a 20-percent-off promotion on all
items purchased in September. Which of the following code
segments properly calculates the correct total price at the end of
the quarter?

(A) I only
(B) II only
(C) I and II only
(D) II and III only
(E) I, II, and III

5. Consider the following method.

What value is returned by the call mystery(5)?
(A) 1
(B) 7
(C) 8
(D) 9
(E) 10

6. Consider the following code segment.

What is the value of myString after executing the code segment?
(A) "H"
(B) "AHA"
(C) "AAAHAAA"
(D) "AAAAHAAAA"
(E) "AAAAAAHAAAAAA"

7. Consider the following statement.
int var = (int)(Math.random() * 50) + 10;

What are the possible values of var after executing the
statement?
(A) All integers from 1 to 59 (inclusive)
(B) All integers from 10 to 59 (inclusive)

(C) All integers from 10 to 60 (inclusive)
(D) All real numbers from 50 to 60 (not including 60)
(E) All real numbers from 10 to 60 (not including 60)

8. Consider the following statement.
System.out.print(13 + 6 + "APCSA" + (9 - 5) + 4);

What is printed as a result of executing the statement?
(A) 136APCSA(9 - 5)4
(B) 19APCSA8
(C) 19APCSA44
(D) 136APCSA8
(E) 136APCSA44

9. Assume truth1 and truth2 are boolean variables that have been
properly declared and initialized.

Consider this expression.
(truth1 && truth2) || ((!truth1) && (!truth2))

Which expression below is its logical equivalent?
(A) truth1 != truth2
(B) truth1 || truth2
(C) truth1 && truth2
(D) !truth1 && !truth2
(E) truth1 == truth2

10. Consider the following method.

Assume that the ArrayList passed as a parameter contains the
following Integer values.
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

What value is returned by the call totalValue?
(A) 20
(B) 21
(C) 27
(D) 44
(E) 45

Questions 11–14 refer to the following class definition.

11. The Depot class has three constructors. Which of the following is
the correct term for this practice?

(A) Overriding
(B) Procedural abstraction
(C) Encapsulation
(D) Polymorphism
(E) Overloading

12. Consider the following code segment in another class.
Depot station = new Depot("Oakland", "California");
System.out.println(station);

What is printed as a result of executing the code segment?
(A) California, Oakland USA true

(B) California, Oakland USA active
(C) USA, California USA true
(D) Oakland, California USA active
(E) Oakland, California USA true

13. Consider the following class definition.
public class WhistleStop extends Depot

Which of the following constructors compiles without error?

(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III

14. Assume a correct no-argument constructor has been added to
the WhistleStop class.

Which of the following code segments compiles without error?

(A) I only
(B) I and II only
(C) I and III only
(D) II and III only
(E) I, II, and III

15. Consider the following code segment.

What is printed as a result of executing the code segment?
(A) nicraz
(B) nieicr
(C) nieicraz
(D) einicraz
(E) weienicraz

16. Consider the following method.

Which of the following sets of data tests every possible path
through the code?
(A) -6, -1, 15, 12
(B) -5, -3, 12, 15
(C) -8, -5, 8, 10
(D) -6, 0, 20, 7
(E) -10, -5, 10, 12

Questions 17–18 refer to the following scenario.

A resort wants to recommend activities for its guests, based on
the temperature (degrees F) as follows:

17. Consider the following method.

Consider the following statement.
System.out.println("We recommend that you " +
chooseActivity(temperature));

For which temperature range is the correct suggestion printed (as
defined above)?
(A) temperature > 75
(B) temperature > 60
(C) temperature > 45
(D) temperature <= 60
(E) Never correct

18. After discovering that the method did not work correctly, it was
rewritten as follows.

Consider the following statement.
System.out.println("We recommend that you " +
chooseActivity(temperature));

What is the largest temperature range for which the correct
suggestion is printed (as defined above)?
(A) Always correct
(B) Never correct
(C) temperature <= 75
(D) temperature <= 60
(E) temperature <= 45

19. Assume int[] arr has been correctly instantiated and is of
sufficient size. Which of these code segments results in identical
arrays?

(A) I and II only
(B) II and III only
(C) I and III only
(D) I, II, and III
(E) All three arrays are different.

20. Consider the following code segment.

What is printed as a result of executing the code segment?
(A) [Canada, Russia, France]
(B) [Cambodia, Russia, France]
(C) [Australia, Cambodia, Russia, France]
(D) [Canada, Cambodia, Russia, France]
(E) Nothing is printed. IndexOutOfBoundsException

21. Consider the following class used to represent a student.

Consider the ExchangeStudent class that extends the Student
class.

Which of the following constructors could also be included in the
ExchangeStudent class without generating a compile-time error?

(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

22. Consider the following method.

What could replace /* missing code */ to allow the method to
return the number of times letter appears in word?
(A) word.substring(index).equals(letter)
(B) word.substring(index, index + 1) == letter
(C) word.indexOf(letter) == letter.indexOf(letter)
(D) word.substring(index, index + 1).equals(letter)
(E) letter.equals(word.substring(index).indexOf(letter))

23. Assume obscureAnimals is an ArrayList<String> that has been
correctly constructed and populated with the following items.
["okapi", "aye-aye", "cassowary", "echidna", "sugar
glider", "jerboa"]

Consider the following code segment.

What will be printed as a result of executing the code segment?
(A) []
(B) [sugar glider]
(C) [aye-aye, echidna, sugar glider]
(D) [aye-aye, echidna, sugar glider, jerboa]
(E) Nothing will be printed. There is an

ArrayListIndexOutOfBoundsException.

24. Consider the following method.

What is the purpose of the method whatDoesItDo?
(A) The method returns true if st has an even length, false if it

has an odd length.
(B) The method returns true if st contains any character more

than once.
(C) The method returns true if st is a palindrome (spelled the

same backward and forward), false if it is not a palindrome.
(D) The method returns true if st begins and ends with the

same letter.
(E) The method returns true if the second half of st contains

the same sequence of letters as the first half, false if it does
not.

25. Consider the following code segment.

What is printed as a result of executing the code segment?

(A) 0
(B) 1
(C) 8
(D) 33
(E) Nothing will be printed. It is an infinite loop.

Questions 26–28 refer to the following classes.

26. Which of the following is a correct implementation of a Child
class constructor?

27. Which of the following is a correct implementation of the Adult
class toString method?

28. Consider the following method declaration in a different class.
public void findSomeone(Adult someone)

Assume the following variables have been correctly instantiated
and initialized with appropriate values.
Person p;
Adult a;
Child c;

Which of the following method calls compiles without error?

(A) II only

(B) I and II only
(C) II and IV only
(D) II, IV, and V only
(E) II, III, and IV only

29. Consider the following method. The method is intended to return
true if the value val raised to the power power is within the
tolerance tolerance of the target value target, and false
otherwise.

Which code segment below can replace /* missing code */ to
make the method work as intended?

30. Consider the following method.

Consider the following code segment.

What is printed as a result of executing the code segment?
(A) num1 = 2 values[4] = 4
(B) num1 = 2 values[4] = 5
(C) num1 = 2 values[4] = 3
(D) num1 = 4 values[3] = 3
(E) num1 = 4 values[3] = 4

31. Consider the following method.

What is returned as a result of the call firstLetterIndex("on
your side")?
(A) -1
(B) 0
(C) 3
(D) 4
(E) 5

32. The following code segment appears in the main method of
another class.

Which of the following statements should be used to replace /*
missing condition */ so that the code segment will not terminate
with a NullPointerException?
(A) if (acArray[i] != null)
(B) if (acArray.get(i) != null)
(C) if (acArray.getData() != null)
(D) if (acArray.getData().equals("two") ||

acArray.getData().equals("three"))
(E) Since not all of acArray’s entries contain an AnotherClass

object, there is no way to loop through the array without a
NullPointerException.

33. A programmer intends to apply the standard Binary Search
algorithm on the following array of integers. The standard Binary
Search algorithm returns the index of the search target if it is
found and -1 if the target is not found. What is returned by the
algorithm when a search for 50 is executed?
int[] array = {9, 100, 11, 45, 76, 100, 50, 1, 0, 55, 99};

(A) -1
(B) 0
(C) 5
(D) 6
(E) 7

34. Consider the following code segment.

What are the values in array nums after the code segment is
executed?
(A) { {0, 1, 0}, {3, 4, 3}, {6, 7, 6} }
(B) { {0, 0, 0}, {3, 3, 3}, {6, 6, 6} }
(C) { {2, 1, 0}, {5, 4, 3}, {8, 7, 6} }
(D) { {0, 1, 2}, {3, 4, 5}, {6, 7, 8} }
(E) { {8, 7, 6}, {5, 4, 3}, {2, 1, 0} }

35. Consider the following code segment.

What is printed as a result of executing the code segment?
(A) [2, 4, 5]
(B) [2, 2, 1]
(C) [2, 4, 3, 5, 1]
(D) [1, 2, 3, 3, 4, 5]
(E) [2, 4, 3, 3, 5, 1]

36. Consider the following code segment.

What is printed as a result of executing the code segment?
(A) 9 9 9
(B) 0 0 0
(C) 0 3 9
(D) 9 3 9
(E) 9 3 0

37. Consider the following sorting method.

Consider the following code segment.
int[] values = {9, 1, 3, 0, 2};
mysterySort(values);

Which of the following shows the elements of the array in the
correct order after the second pass through the outer loop of the
sorting algorithm?
(A) {0, 1, 2, 9, 3}
(B) {0, 1, 3, 9, 2}
(C) {0, 1, 9, 3, 2}
(D) {1, 3, 9, 0, 2}
(E) {1, 3, 0, 2, 9}

38. Consider the following method.

What is returned by the method call puzzle(3, 4)?
(A) 9
(B) 64
(C) 81
(D) 128
(E) Nothing is returned. Infinite recursion causes a stack

overflow error.
39. Consider the following code segment.

What is the value of table[3][4] after executing the code
segment?
(A) 22
(B) 30
(C) 34
(D) 42
(E) 46

40. Consider the following method.

Assume String[] ray has been properly instantiated and
populated with String objects.

Which line of code should replace /* missing code */ so that the
method call selectionSort(ray) results in an array whose
elements are sorted from least to greatest?
(A) if (arr[j].equals(arr[small])
(B) if (arr[j] > arr[small])
(C) if (arr[j] < arr[small])
(D) if (arr[j].compareTo(arr[small]) > 0)
(E) if (arr[j].compareTo(arr[small]) < 0)

STOP. End of Part I.

AP Computer Science A
Practice Exam 1

Part II (Free Response)

Time: 90 minutes
Number of questions: 4
Percent of total score: 50

Directions: Write all of your code in Java. Show all your work.

Notes:
• You may assume all import statements have been included where
they are needed.

• You may assume that all preconditions are met when making calls
to methods.

• You may assume that all parameters within method calls are not
null.

• Be aware that you should, when possible, use methods that are
defined in the classes provided as opposed to duplicating them by
writing your own code. Doing so you will not receive full credit.

• You may use the Java Quick Reference sheet as needed.

1. A Password class contains methods used to determine information
about passwords. You will write two methods of the class.

(a) Write the method isValid, which returns true if a password
is valid and false otherwise. A password is considered valid
if
• Its length is a valid length. The length must be at least
minimum characters and at most maximum characters,
inclusive.

• It contains at least one uppercase letter, one lowercase
letter, and one symbol.

Complete method isValid below.
public boolean isValid(String password)

(b) Write the method generatePassword, which returns a String
representing a valid password. In writing generatePassword
you must call isValid. Assume isValid works correctly
regardless of what you wrote in part (a).

The generatePassword method must randomly choose the
length of the password and randomly choose characters
from the uppercase, lowercase, and symbol strings.

Complete method generatePassword below.
public String generatePassword()

2. An ISBN (International Standard Book Number) is a numeric
book identifier that is assigned to each published book. Prior to
2007, the ISBN numbers were 10 digits in length. The ISBN
number is broken down into sections (group, publisher, title, and
check digit). The last digit, or check digit, is used for error
detection.

To generate a valid check digit, the first nine digits in the ISBN is
multiplied by a weight. Each weight is multiplied by the
corresponding digit, and then the products are added together.

If the value of the check digit is 10, then the check digit becomes
“X”.

An ISBN object is created with a parameter that contains a nine-
digit ISBN number. The ISBN class provides two methods:
calculateCheckDigit and generateNumber.

• calculateCheckDigit will perform the calculations
described above to determine the check digit.

• generateNumber will join together the nine-digit number
and the check digit generated from the method defined
above.

For example, consider the following code that is in a class other
than the ISBN class.

Write the complete ISBN class, including the constructor and any
required instance variables and methods. Your implementation
must meet all specifications to confirm to the example.

3. A train is composed of an engine and any number of train cars.
The engine is rated to pull up to a maximum weight, based on its
power. The weight of all the train cars combined, including the
engine, must be below this maximum weight or the engine will
not be able to move the train.

Trains are represented by the Train class and contain an engine
followed by any number of cars. An ArrayList will be used to

store the weight of the engine (in element 0), and the weights of
each of the cars (in elements 1, 2, 3, etc.).

The weight of a Train object is calculated by adding the weight
of the engine to the weight of each of the objects in the trainCars
ArrayList [to be completed in part (a)].

Trains need to be checked to make sure that their weight can
be pulled by their engine. If the train is overweight, train
operators must remove train cars from the end of the train until
the train is within the acceptable weight range [to be completed
in part (b)].

(a) Write the getTotalWeight method that will calculate the total
weight of the train by adding the weight of each of the train

cars to the weight of the engine (element 0).

(b) Write the removeExcessTrainCars method of the Train class
that removes Double objects one at a time from the end of
the train until the train weight is less than or equal to the
maximum weight allowed as given by the getMaximumWeight
method of the Train object. The removed train cars are
added to the end of an ArrayList of Double objects as they
are removed. This ArrayList of removed Double objects is
returned by the method. If no Double objects need to be
removed, an empty ArrayList is returned. You may assume
what you wrote for part (a) works as intended.

Example:
A train is composed of the cars listed below. The engine has
a maximum weight rating of 475,000 pounds.

In the example, the train initially weighs 650,000 pounds.
Train cars need to be removed one by one from the end of
the train until the total weight is under the maximum allowed
weight of 475,000.

• Removing the train car from index 5 lowers the weight to
590,000

• Removing the train car from index 4 lowers the weight to
490,000

• Removing the train car from index 3 lowers the weight to
440,000

At 440,000 pounds, the train is now in the acceptable weight
range. The following ArrayList is returned by the method:

[60000.0, 100000.0, 50000.0]

Complete the removeExcessTrainCars method.

4. The colors of the pixels on a TV or computer screen are made by
combining different quantities of red, green, and blue light. Each
of the three colors is represented by a value between 0 and 255,
where 0 means none of that color light and 255 means as much of
that color as there can be. This way of representing colors is
referred to as RGB, for red-green-blue, and the color values are
written in ordered triples like this (80, 144, 240). That particular
combination means red at a value of 80, green at a value of 144,
and blue at a value of 240. The resulting color is a kind of medium
blue. The combination (0, 0, 0) produces black and (255, 255, 255)
produces white.

Pixels can be modeled by the Pixel class shown below.

An artist wants to manipulate the pixels on a large computer
display. She begins by creating three two-dimensional arrays the
size of the screen, rows by columns. One array contains the red
value of each pixel, one contains the blue value of each pixel, and
one contains the green value of each pixel. She then calls
methods of the AlterImage class to generate and then manipulate
the data.

(a) Given the three arrays reds, greens, and blues, and the
Pixel and AlterImage classes, implement the
generatePixelArray method that converts the raw
information in the three color arrays into a rows by columns
array of Pixel objects.

Precondition: The three color arrays are all the same size
and contain int values in the range 0–255.
Postcondition: The returned array is the same size as the
three color arrays.

(b) The artist uses various techniques to modify the image
displayed on the screen. One of these techniques is to flip
the image, either horizontally (along the x-axis, top-to-
bottom) or vertically (along the y-axis, left-to-right), so that a
mirror image is produced as shown below.

In this example, the data in the cells are the RGB values
stored in the Pixel objects. To make the example clearer,

red is set to the original row number, green is set to the
original column number, and blue is constant at 100.

Original array:

Flipped horizontally:

Flipped vertically:

Write the flipImage method, which takes as parameters a
2D array of Pixel objects and a boolean direction to flip,
where true means horizontally and false means vertically.
The method returns the flipped image as a 2D array of Pixel
objects.

STOP. End of Part II.

Practice Exam 1
Answers and Explanations

Part I (Multiple Choice)

Answers and Explanations
Bullets mark each step in the process of arriving at the correct
solution.

1. The answer is E.
• Lines 1 and 2 give us: myValue = 17 and multiplier = 3
• Line 3: answer = 17 % 3 + 17 / 3

• Using integer division: 17 / 3 = 5 remainder 2, giving us:
• 17 / 3 = 5
• 17 % 3 = 2
• The expression simplifies to answer = 2 + 5 = 7 (remember
order of operations)

• Line 4: answer = 7 * 3 = 21

2. The answer is B.
• Let’s use De Morgan’s theorem to simplify the expression.

!(a < b || b <= c) && !(a < c || b >= a)
• Distribute the first !. Remember to change || to &&. This gives:

!(a < b) && !(b <= c)
• Distribute the second ! This gives:

!(a < c) && !(b >= a)
• It’s easy to simplify all those !s. Remember that !< >= and

!<= > (the same with < and >=).
(a >= b) && (b > c) && (a >= c) && (b < a)

• Since these are all &&s, all four conditions must be true. The
first condition says a >= b and the fourth condition says b < a.
No problem there. Options B and C both have a > b. Option A
can be eliminated.

• The second condition says b > c. That’s true in option B.
Option C can be eliminated.

• The third condition says b < a. Still true in option B, so that’s
the answer.

• You could also solve this problem with guess and check by
plugging in the given values, but all those ands and ors and
nots tend to get pretty confusing. Simplifying at least a little will
help, even if you are going to ultimately plug and chug.

3. The answer is D.
• The while loop condition is (myArray[index] < 7). If you did not
read carefully, you may have assumed that the condition was
(index < 7), which, along with the index++ is the way you would
write it if you wanted to access every element in the array.

• Because the condition is (myArray[index] < 7), we will start at
element 0 and continue until we come to an element that is
greater than or equal to 7. At that point we will exit the loop
and no more elements will be processed.

• Every element before the 7 in the array will have 3 added to its
value.

4. The answer is A.
• Option I correctly accesses and processes every element in
the ArrayList.

• Option II uses a for-each loop. That is an excellent option for
this problem, since we need to process each element in

exactly the same way, but option II does not access the
element correctly. Read the for-each loop like this: “For each
OnlinePurchaseItem (which I will call purchase) in items.…”
The variable purchase already holds the needed element.
Using get(i) to get the element is unnecessary and there is no
variable i.

• Option III uses a for loop and processes the elements in
reverse order. That is acceptable. Since we need to process
every item, it doesn’t matter what order we do it in. However,
option III starts at i = items.size(), which will cause an
IndexOutOfBoundsException. Remember that the last element
in an ArrayList is list.size() – 1 (just like a String or an array).

5. The answer is D.
• This is a recursive method. Let’s trace the calls. The parts in

italics were filled in on the way back up. That is, the calls in the
plain type were written top to bottom until the base case
returned a value. Then the answers were filled in bottom to
top.
• mystery(5) = 2 + mystery(4) = 2 + 7 = 9 which gives us our
final answer.

• mystery(4) = 2 + mystery(3) = 2 + 5 = 7
• mystery(3) = 2 + mystery(2) = 2 + 3 = 5
• mystery(2) = 2 + mystery(1) = 2 + 1 = 3
• mystery(1) Base Case! return 1

6. The answer is E.
• The outer loop will execute three times, starting at index = 0
and continuing as long as index < 4, increasing by one each
time through. So index will equal 0, 1, 2, 3 in successive
iterations through the loop.

• The only statement inside the outer loop is the inner loop.
Let’s look at what the inner loop does in general terms.

• The inner loop executes from i = 0 to i < index, so it will
execute index times.

• Each time through it puts an "A" in front of and after myString.

• Putting it all together:
• The first iteration of the outer loop, index = 0, the inner loop
executes 0 times, myString does not change.

• The second iteration of the outer loop, index = 1, the inner
loop executes one time, adding an "A" in front of and after
myString. myString = "AHA"

• The third iteration of the outer loop, index = 2, the inner loop
executes two times, adding two "A"s in front of and after
myString. myString = "AAAHAAA"

• The fourth (and last) iteration of the outer loop, index = 3,
the inner loop executes three times, adding three more "A"s
in front of and after myString. myString =
"AAAAAAHAAAAAA"

• Putting it another way, when index = 1, we add one "A"; when
index = 2, we add two "A"s; when index = 3, we add three "A"s.
That’s six "A"s all together added to the beginning and end of
"H" "AAAAAAHAAAAAA"

7. The answer is B.
• The general form for generating a random number between

high and low is:
(int)(Math.random() * (high - low + 1)) + low

• high – low + 1 = 50, low = 10, so high = 59
• The correct answer is integers between 10 and 59 inclusive

8. The answer is C.
• This question requires that you understand the two uses of
the + symbol.

• First, we execute what is in the parentheses. Now we have:
13 + 6 + "APCSA" + 4 + 4

• Now do the addition left to right. That’s easy until we hit the
string:
19 + "APCSA" + 4 + 4

• When you add a number and a string in any order, Java turns
the number into a string and then concatenates the strings:
"19APCSA" + 4 + 4

• Now every operation we do will have a string and a number,
so they all become string concatenations, not number
additions.
"19APCSA44"

9. The answer is E.
• Let’s consider what the expression is telling us.

(truth1 && truth2) || ((!truth1) && (!truth2))
• The expression is true if both truth1 and truth2 are true OR if
both truth1 and truth2 are false.

• Therefore, the expression is true as long as truth1 == truth2.

10. The answer is A.
• The for-each loop looks at every item in the ArrayList and
adds it to sum if:
• the value of the item > 1 (all values except 0 and 1) AND
• the size of the list - 3 > the value of the item. Since the list
has 10 elements, we can rewrite this as the value of the
item < 7, which is true for all elements 6 and below.

• Both conditions are true for 2, 3, 4, 5, 6; so the sum is 20.

11. The answer is E.
• Methods or constructors with the same name (and return type,
in the case of methods) may have different parameter lists.
The parameters may differ in type or number. This is called
overloading.

12. The answer is A.
• We can eliminate options B and D immediately by noticing
that active is a boolean and will therefore print as either "true"
or "false" and not as "active" even though that is more
informative.

• We would expect option E to be correct by reading the code,
but the constructor was called incorrectly. The overloaded
constructor that is being called is the two-parameter
constructor, and that constructor is going to assign its first
parameter to state and its second parameter to city. Since we

passed city, state, in that order, the city name and the state
name have been assigned incorrectly and will therefore be
printed incorrectly.

• Note that this is a confusing way to write an overloaded
constructor! The order of the variables changes for no reason.

13. The answer is D.
• Option I is incorrect. Most classes have a no-argument
constructor; either the default constructor provided
automatically if no other constructor is provided, or one written
by the programmer. However, the Depot class does not. The
super call causes a compile-time error.

• Option II is correct. It implements a no-argument constructor
in the WhistleStop class, which passes the needed
parameters to the Depot constructor.

• Option III is also correct. It takes two parameters and correctly
passes them to the Depot constructor via the call to super.
However, this code will probably not give you the result you
are expecting. Just like in question 12, the order of the city and
province has been switched.

14. The answer is A.
• Option I is correct. The ArrayList is correctly instantiated as
an ArrayList of Depot objects. Since a WhistleStop object is-a
Depot object, a WhistleStop object may be added to the
ArrayList. WhistleStop contains a no-argument constructor,
and the Depot constructor is called correctly as well.

• Option II is incorrect. A WhistleStop is-a Depot, but not the
other way around. We cannot put Depot objects into an
ArrayList that is declared to hold WhistleStop objects. The
ArrayList declaration will generate a compile-time error.

• Option III is incorrect. The ArrayList is correctly instantiated
as an ArrayList of WhistleStop objects. We can add
WhistleStop objects to this ArrayList, but we cannot add
Depot objects. The second add will generate a compile-time
error.

15. The answer is B.
• When we start the for-each loop, the variable crazyString =
"crazy" and the ArrayList crazyList has two elements ["weird,"
"enigma"].

• You can read the for-each like this: “For each String (which I
am going to call s) in crazyList.…”

• So for each String s in crazyList we execute the assignment
statement:
crazyString = s.substring(1, 3) +
crazyString.substring(0, 4);

which takes two characters starting at index 1 from s and
concatenates the first four characters of crazyString.

• The first time through the loop, s = "weird" and crazyString =
"crazy" so the assignment becomes:
crazyString = "ei" + "craz" = "eicraz"

Remember that substring starts at the first parameter and
ends before the second parameter, and remember that we
start counting the first letter at 0.

• The second time through the loop, s = "enigma" and
crazyString = "eicraz" so the assignment becomes:
crazyString = "ni" + "eicr" = "nieicr"

16. The answer is E.
• There are four possible paths through the code. We need one
data element that will pass through each path.
• The first path is executed if n < -5.
• The second path is executed if -5 ≤ n < 0 (because if n < -5,
the first path is executed and we will not reach the second
path).

• The third path is executed if n > 10.
• The fourth path is executed in all other cases.

• We need to be sure that we have at least one piece of data for
all four of those cases.

• Option A does not test the fourth path, because 12 and 15 are
both > 10.

• Option B does not test the first path, because it doesn’t have a
number that is < -5.

• Option C does not test the third path, because it doesn’t have
a number that is > 10.

• Option D does not test the second path, because 0 is not less
than 0.

• Option E tests all four paths.

17. The answer is D.
• This statement should be written with if-else ladder. When the
clause associated with a true condition is executed, the rest of
the statements should be skipped. Unfortunately, that is not
how it is written. For example, if the parameter temperature =
80, the first if is evaluated and found to be true and activity =
"go swimming"; however, since there is no else, the second if
is also evaluated and found to be true, so activity = "go hiking".
Then the third if is evaluated and found to be true, so activity =
"go horseback riding". The else clause is skipped and "go
horseback riding" is returned (incorrectly).

• All temperatures that are true for multiple if statements will
cause activity to be set incorrectly. Only the values of
temperature that will execute the last if or the else clause will
return the correct answer.

• In order for this code to function as intended, all ifs except the
first one should be preceded with else.

18. The answer is D.
• This time, there is an if-else ladder, but they are in the wrong
order. It is important to write the most restrictive case first.
Let’s test this code by using 80 as an example. 80 > 75, and
that is the condition we intend to execute, but unfortunately, it
is also > 45, which is the first condition in the code, so that is
the if clause that is executed and activity is set to "go
horseback riding". Since the code is written as an if-else

ladder, no more conditions are evaluated and flow of control
jumps to the return statement.

• Two sets of values give the right answer:
• Values that execute the first if clause correctly—that is,
values that are greater than 45, but less than or equal to 60.

• Values that fail all the if conditions and execute the else
clause—that is, values that are less than or equal to 45.

• Those two conditions can be combined into temperatures <=
60.

• In order for this code to function as intended, the order of the
conditions needs to be reversed.

19. The answer is A.
• Let’s look at the three code segments one by one.
• Option I:

• When we enter the loop, i = 1.
• arr[1 / 2] = arr[0] = 1 (don’t forget integer division)
• i = i + 2 = 3, 3 < 6 so we enter the loop again.
• arr [3 / 2] = arr[1] = 3
• i = i + 2 = 5, 5 < 6 so we enter the loop again.
• arr[5 / 2] = arr[2] = 5
• i = i + 2 = 7, 7 is not < 6 so we exit the loop.
• The array arr = [1, 3, 5]

• Option II:
• When we enter the loop, i = 0.
• arr[0] = 2 * 0 + 1 = 1
• increment i to 1, 1 < 3 so we enter the loop again.
• arr[1] = 2 * 1 + 1 = 3
• increment i to 2, 2 < 3 so we enter the loop again.
• arr[2] = 2 * 2 + 1 = 5
• increment i to 3, 3 is not < 3 so we exit the loop.
• The array arr = [1, 3, 5]

• Option III:
• When we enter the loop, i = 6.

• arr[(6 – 6) / 2] = arr[0] = 6 – 6 = 0
• Since we know the first element should be 1, not 0, we can
stop here and eliminate this option.

• Options I and II produce the same results.

20. The answer is C.
• Let’s picture our ArrayList as a table. After the add
statements, ArrayList nations looks like this:

• It looks like perhaps the loop is intended to remove all
elements whose length is greater than or equal to 7, but that is
not what this loop does. Let’s walk through it.

• i = 0. nations.size() = 6, 0 < 6 so we enter the loop.
• nations.get(0).length() gives us the length of "Argentina" =

9.
• 9 >= 7, so we remove the element at location 0. Now our

ArrayList looks like this:

• increment i to 1. nations.size() = 5, 1 < 5, so we enter the loop.
• nations.get(1).length() gives us the length of "Australia" = 9.

(We skipped over "Canada" because it moved into position
0 when "Argentina" was removed.)

• 9 >= 7, so we remove the element at location 0. Now our
ArrayList looks like this:

• increment i to 2. nations.size() = 4, 2 < 4 so we enter the loop.
• nations.get(2).length() gives us the length of "Russia" = 6.
• 6 is not >= 7 so we skip the if clause.

• increment i to 3. nations.size() = 4, 3 < 4 so we enter the loop.
• nations.get(3).length() gives us the length of "France" = 6.
• 6 is not >= 7 so we skip the if clause.

• increment i to 4. nations.size() = 4, 4 is not < 4 so we exit the
loop with the ArrayList:

• Note: You have to be really careful when you remove items
from an ArrayList in the context of a loop. Keep in mind that
when you remove an item, the items with higher indices don’t
stay put. They all shift over one, changing their indices. If you
just keep counting up, you will skip items. Also, unlike an
array, the size of the ArrayList will change as you delete
items.

21. The answer is D.
• Option I is correct. It calls the super constructor, correctly
passing on 2 parameters, and then sets its own instance
variables, one to the passed parameter, one to a default value.

• Option II is incorrect. It attempts to call the student class 2
parameter constructor, passing default values, but the year is
being passed as a String, not as an int.

• Option III is correct. There will be an implicit call to Student’s
no-argument constructor.

22. The answer is D.
• index starts at 0 and goes to the end of the String. We want a
condition that will look at the letter in word at index, compare it
to the letter parameter, and count it if it is the same.

• Option A is incorrect. The one-parameter substring includes
everything from the starting index to the end of the word. We
need one letter only.

• Option B is incorrect. We cannot compare Strings with ==.
• Option C is incorrect. indexOf will tell us whether a letter
appears in a word and where it appears, but not how many
times. It is possible to count the occurrences of letter using
indexOf, but not this way. Option C does not change the if
condition each time through the loop. It just asks the same
question over and over.

• Option D is correct. It selects one letter at index and compares
it to letter using the equals method, incrementing count if they
match.

• Option E is incorrect. It will not compile. It tries to compare
letter to the int returned by indexOf.

23. The answer is C.
• You might expect that the loop will remove any animal whose
name comes before pink fairy armadillo lexicographically, but
removing elements from an ArrayList in the context of a loop is
tricky. Let’s walk through it.

• We start with:

• The for loop begins, i = 0. Compare "okapi" with "pink fairy
armadillo", and since "o" comes before "p", remove "okapi".

• The next iteration begins with i = 1. The remove operation has
caused all the elements’ index numbers to change. We skip
"aye-aye", which is now element 0, and look at "cassowary",
which we remove.

• The next iteration begins with i = 2. Again the elements have
shifted, so we skip "echidna", compare to "sugar glider" but
that comes after "pink fairy armadillo" so it stays put leaving
the ArrayList unchanged.

• The next iteration begins with i = 3. Remove "jerboa".

• i = 4, which is not < animals.size(). We exit the loop and print
the ArrayList.

• Remember that if you are going to remove elements from an
ArrayList in a loop, you have to adjust the index when an
element is removed so that no elements are skipped.

• Note that if we used the loop condition i < 6 (the size of the
original ArrayList), then there would have been an
IndexOutOfBoundsException, but because we used
animals.size(), the value changed each time we removed an
element.

24. The answer is C.
• This method takes a String parameter and loops through the
first half of the letters in the string.

• The first substring statement assigns the letter at index i to
sub1. You may have to run through an example by hand to
discover what the second substring does.

• If our string is “quest”:
• the first time through the loop, i = 0, so sub1 = "q" and sub2

= st.substring(5 - 0 - 1, 5 - 0) = "t",
• the second time, i = 1, so sub1 = "u" and sub2 =
st.substring(5 - 1 - 1, 5 - 1) = "s".

• This loop is comparing the first letter to the last, the second to
the second to last, and so on, which will tell us if the string is a
palindrome.

25. The answer is E.
• The loop will continue to execute until either value <= 5 or
calculate = false.

• When we enter the loop, value = 33, calculate = true.
• Since 33 % 3 = 0 we execute the first if clause and set value

= 31.
• 31 / 4 = 7, which is not < 3, so we do not execute the second
if clause.

• The second iteration of the loop begins with value = 31 and
calculate = true.

• Since 31 % 3 != 0, we do not execute the first if clause.
• Since 31 / 4 = 7, which is not < 3, we do not execute the
second if clause.

• At this point, we notice that nothing is ever going to change.
Value will always be equal to 31 and calculate will always be
true. This is an infinite loop.

26. The answer is C.
• Option A is incorrect. If Child extended Adult, this would be the
correct constructor, but Child extends Person. The Person
constructor does not take a title, only a first name and last
name.

• Option B is incorrect because Person does not have a no-
argument constructor. The call to super() will cause a compile
time error.

• Options D and E are incorrect because of the “extends”
phrase. The keyword extends is used in the class declaration,
not the constructor declaration.

• Option C is the correctly written constructor.
27. The answer is E.

• Options A and D are incorrect because they print information
to the console rather than returning it as a string. Option A also
calls super.toString, which does not exist.

• Option B is incorrect because, like option A, it calls
super.toString, which does not exist.

• Option C is incorrect because firstName and lastName are
private instance variables of the Person class and cannot be
accessed by the Adult class.

• Option E is a correctly written toString method.

28. The answer is C.
• Method findSomeone is expecting a parameter of type Adult.
The question is, which of the options correctly provides a
parameter of type Adult?

• Option I is incorrect. Here, the parameter is of type Person.
Adult extends Person, not the other way around, so a Person
is not an Adult.

• Option II is correct. The parameter is of type Adult.
• Option III is incorrect. Here, the parameter is of type Child.
Child extends Person, not Adult, so a Child is not an Adult.

• Option IV is correct. A Person reference variable can be
downcast to an Adult since Adult extends Person. At run-time,
if the reference variable does not reference an Adult object as
promised by the cast, the program will crash with a run-time
error.

• Option V is incorrect. Child is not a superclass of Adult. Child
cannot be downcast to Adult.

29. The answer is E.
• The basic formula for tolerance is:

Math.abs(a - b) <= tolerance;

• In our case, a is valpower, or Math.pow(val, power), and b is
target, so the equation becomes:
Math.abs(Math.pow(val, power) - target) <= tolerance;

• That evaluates to a boolean. We could assign it to a boolean
variable and return the variable, but we can also just return the
expression as in option E.

30. The answer is C.
• This problem requires you to understand that primitives are
passed by value and objects are passed by reference.

• When a primitive argument (or actual parameter) is passed to
a method, its value is copied into the formal parameter.
Changing the formal parameter inside the method has no
effect on the value of the variable passed in. The caller’s num1
will not be changed by the method.

• The caller’s num2 is not changed when the num2++ is
executed inside the method. That new value, however, is
returned by the method, and the caller uses the returned value
to reset num2. The value of num2 will change.

• When an object is passed to a method, its reference is copied
into the formal parameter. The actual and formal parameters
become aliases of each other; that is, they both point to the
same object. Therefore, when the object is changed inside the
method, those changes will be seen outside of the method.
Changes to array values inside the method will be seen in
array values outside of the method.

• num1 remains equal to 2, even though the method’s num1
variable is changed to 4. num2 is reset to 4, because the
method returns that value, and values[4] is set to 3.

31. The answer is C.
• Let’s figure this out step by step. The length of "on your side"
is 12 (don’t forget to count spaces), so
s1.indexOf(s2.substring(s2.length() - 2)) simplifies to
s1.indexOf(s2.substring(10))

• That gives us the last two letters of s2, so our statement
becomes s1.indexOf("de")

• Can we find "de" in s1? Yes. It starts at index 3 and that is what
is returned.

32. The answer is A.
• acArray is an array of objects. Initially, all the entries in the
array are null. That is, they do not reference anything. If a
program tries to use one of these entries as if it were an
object, the program will terminate with a
NullPointerException.

• To avoid the NullPointerException, we must not attempt to
use a null entry as if it contained a reference to an object.

• Option B is incorrect. It uses ArrayList syntax, not array
syntax, so it will not even compile.

• Options C and D are incorrect. They attempt to call getData()
on a null entry and so will terminate with a
NullPointerException.

• Option A is correct. It checks to see whether the array entry is
null before allowing the System.out.println statement to treat it

as an object.
33. The answer is A.

• The Binary Search algorithm should not be applied to this
array! Binary Search only works on a sorted array. However,
the algorithm will run; it just won’t return reasonable results.
Let’s take a look at what it will do.

• First look at the middle element. That’s 100. 50 < 100, so
eliminate the second half of the array.

• Look at the middle element of the remaining part; 50 > 11, so
eliminate the lower half.

• 50 does not appear in the remaining elements, return -1
(incorrectly, as it turns out).

34. The answer is C.
• After the array is instantiated, it looks like this:

• The for loop will execute three times: x = 0, x = 1, and x = 2.
• You should recognize that the code in the loop is a simple
swap algorithm that swaps the value at nums[x][0] with the
value at nums[x][2].

• The result is that in each row, element 0 and element 2 will be
swapped.

• Our final answer is:

35. The answer is A.
• Let’s trace the loop and see what happens. On entry we have:

• i = 1. In pseudocode, the if statement says "if (element 1 of
list > the last element in newList) add it to newList". Since 4 >
2, add 4 to newList, which becomes:

• i = 2. "if (element 2 of list > the last element in newList) add it
to newList" 3 is not > 4 so we do not add it.

• i = 3. "if (element 3 of list > the last element in newList) add it
to newList" 3 is not > 4, we do not add it. (By this point, you
may recognize what the code is doing and you may be able to
complete newList without tracing the remaining iterations of
the loop.)

• i = 4 "if (element 4 of list > the last element in newList) add it to
newList" 2 is not > 4, we do not add it.

• i = 5. “if (element 5 of list > the last element in newList) add it
to newList" 5 > 4, add 5 to newList which becomes:

• i = 6. "if (element 6 of list > the last element in newList) add it
to newList" 1 is not > 5, so we do not add it.

• We have completed the loop; we exit and print newList.
36. The answer is E.

• After the array is instantiated, it is filled with 0s because that is
the default value for an int, so anything we don’t overwrite will
be a 0.

• Let’s look at the first loop. r goes from 0 to 4, so all rows are
affected. c starts at r+1 and goes to 4, so not all columns are
affected. When r = 0, c will = 1,2,3,4; when r = 1, c will = 2,3,4;
when r = 2, c will = 3,4; when r = 3, c will = 4. That will assign 9
to the upper-right corner of the grid like this.

• In the second loop, d goes from 0 to 4, so all rows are affected,
and c always equals r, so the diagonals are filled in with their
row/column number.

• Now we just have to look for the three cells specified in the
problem.

37. The answer is D.
• The first thing to do is to identify the sorting algorithm
implemented by mysterySort.

• We can tell it’s not Merge Sort, because it is not recursive.
• There are several things we can look for to identify whether a
sort is Insertion Sort or Selection Sort. Some easy things to

look for:
• In the inner loop, Insertion Sort shifts items over one slot.
• After the loops are complete, Selection Sort swaps two
elements.

• We can see items being shifted over and we can’t see a swap,
so this is Insertion Sort.

• Let’s look at the state of the array in table form. Before the sort
begins, we have this. The sort starts by saying that 9 (all by
itself) is already sorted.

• The first iteration through the loop puts the first two elements
in sorted order.

• The second iteration through the loop puts the first three
elements in sorted order.

• Notice that in Insertion Sort, the elements at the end of the
array are never touched until it is their turn to be “inserted.”
Selection Sort will change elements all through the array.

38. The answer is C.
• This is a recursive method. Let’s trace the calls. The parts in

italics were filled in on the way back up. That is, the calls in the
plain type were written top to bottom until the base case
returned a value. Then the answers were filled in bottom to
top.
• puzzle (3, 4) = 3 * puzzle (3, 3) = 3 * 27 = 81 which gives us
our final answer

• puzzle (3, 3) = 3 * puzzle (3, 2) = 3 * 9 = 27
• puzzle (3, 2) = 3 * puzzle (3, 1) = 3 * 3 = 9
• puzzle (3, 1) Base Case! return 3

• It is interesting to notice that this recursive method finds the
first parameter raised to the power of the second parameter.

39. The answer is D.
• This nested for loop is traversing the array in column major
order. I can tell this is the case because the outer loop, the one
that is changing more slowly, is controlling the column
variable. For every time the column variable changes, the row
variable goes through the entire row.

• In addition, although the outer loop is traversing the columns
from least to greatest, the inner loop is working backward
through the rows.

• Since we increase val by 2 each time, values are being filled in
like this:

• You probably didn’t need to fill in the whole table to figure out
that table[3][4] = 42.

40. The answer is E.
• Since this is a Selection Sort algorithm, we know that the inner
loop is looking for the smallest element.

• small is storing the index of the smallest element we have
found so far. We need to find out if the current element being
examined is smaller than the element at index small, or, in
other words, if arr[j] is less than arr[small].

• Option C would be correct if we were sorting an array of ints,
but < doesn’t work with strings. We have to use the method
compareTo. compareTo returns a negative value if the calling

element is before the parameter value. We need:
if (arr[j].compareTo(arr[small] < 0))

Part II (Free Response)

Answers and Explanations
Please keep in mind that there are multiple ways to write the
solution to a Free-response question, but the general and refined
statements of the problem should be pretty much the same for
everyone. Look at the algorithms and coded solutions, and
determine if yours accomplishes the same task.

General Penalties (assessed only once per problem):
-1 using a local variable without first declaring it
-1 returning a value from a void method or constructor
-1 confusing array/ArrayList access
-1 overwriting information passed as a parameter
-1 including unnecessary code that causes a side effect such as

a compile error or console output
1. Password

(a) General Problem: Write the isValid method for the
Password class.

Refined Problem: Determine if a password is valid by
comparing the checking if the password has the correct
length and the correct combination of letters and symbols.

Algorithm:
• Determine the length of the password.
• If the length is not between the minimum length and the
maximum length, then return false. Otherwise, continue
checking.

• Initialize counters for the number of uppercase letters,
lowercase letters, and symbols to zero.

• For each character in the password increment the
appropriate counter.

• If the counter for each isn’t zero (meaning there was at
least one occurrence) and the sum of all three counters
equal the length of the password (meaning there were no
symbols outside those that are acceptable), then it is a
valid password.

• Return the result.

Java Code:

Common Errors:
• Not taking into account that there might be characters
other than letters or acceptable symbols.

• Not checking for the length of the password.
• Not initializing or declaring the necessary variables.

(b) General Problem: Write the generatePassword method for
the Password class.
Refined Problem: Use the random number generator to
choose upper case, lower case, and symbols from the given
strings. Determine if the generated password is valid by
using the method written in part (a).

Algorithm:

• Concatenate the upper case, lower case and symbol
strings.

• Determine if a valid password has been generated.
• Use the random number generator to choose a valid
length of the password.

• Use the random number generator to randomly
choose a letter from the concatenated
upper/lower/symbol string.

• Continue randomly choosing letters until the string has
reached the desired length.

• Test to see if the password is valid.
• If the password is not valid, start the process again until
a valid password has been generated.

• Return the generated password string.

Java Code:

Common Errors:
• Not checking to see if the generated password is valid.
• Not randomly choosing a length for the new password.
• Not initializing or declaring necessary variables.
• Not returning the generated password.

Scoring Guidelines: Password

Sample Driver:
There are many ways to write these methods. Maybe yours
is a bit different from our sample solutions and you are not
sure if it works. Here is a sample driver program. Running it
will let you see if your code works, and will help you debug it
if it does not.

Copy PasswordDriver into your IDE along with the
complete Password class (including your solutions).

2. ISBN

General Problem: Write an ISBN class.
Refined Problem: Define necessary instance variables, a
constructor with one integer parameter, and two methods.

Algorithm:
• Declare a private instance variable to hold the 9-digit ISBN
number.

• Define a constructor with one integer parameter and assign
the value of the parameter to the instance variable.

• Write a calculateCheckDigit method that returns a string
containing the check digit.
• For each of the 9 digits in the ISBN number, find the product
of digit and the weighted value.

• Maintain a sum of those products.
• Determine the check digit by using the formula given.

• Write a generateNumber method that concatenates the
instance variable with the result of the call to the
calculateCheckDigit method.

Java Code:

Scoring Guidelines: ISBN

Sample Driver:
There are many ways to write these methods. Maybe yours
is a bit different from our sample solutions and you are not
sure if it works. Here is a sample driver program. Running it
will let you see if your code works, and will help you debug it
if it does not.

Copy ISBNDriver into your IDE along with the complete
ISBN class (including your solutions).

3. Train
(a) General Problem: Write the getTotalWeight method to find

the total weight of the engine and train.

Refined Problem: The method should loop through each
element of the ArrayList and add it to a sum variable.

Algorithm:
• Initialize a sum variable to 0.
• Loop through each element of the ArrayList.
• Add the value of the current element to the accumulated
sum.

• Return the accumulated sum.

Java Code:

Common Errors:
• Not initializing the sum to 0.
• Not accessing each element of the ArrayList.
• Not returning the sum.

Java Code Alternate Solution:

(b) General Problem: Write the removeExcessTrainCars method
of the Train class that removes cars from the train until the
train is light enough to be pulled by the engine.

Refined Problem: Calculate the initial weight of the train. If
the weight exceeds the weight limit, TrainCars are removed
from the end of the train until the weight is in the acceptable

range. All train cars that are removed are returned in an
ArrayList in the order they are removed from the train.

Algorithm:
• Create an ArrayList of Double to hold the removed cars.
• While the total weight is greater than the Engine’s
maximum weight,
• Remove a train car from the end of the train
• Add it to the ArrayList to be returned

• Return the ArrayList of removed cars (which may be
empty).

Java Code:

Common Errors:
• Not creating a temporary ArrayList when needed.
• Remember that remove also returns the removed
element. You do not need a get followed by a remove.

• Not returning the temporary ArrayList.

Scoring Guidelines: Train

Sample Driver:
There are many ways to write these methods. Maybe yours
is a bit different from our sample solutions and you are not
sure if it works. Here is a sample driver program. Running it
will let you see if your code works, and will help you debug it
if it does not.

Copy TrainDriver and the complete Train class into your
IDE. Add your getTotalWeight and removeExcessTrainCars
methods to the bottom of the TrainDriver class.

4. Pixels
(a) General Problem: Write the generatePixelArray method to

convert three 2-D int arrays into a 2-D array of Pixel objects.

Refined Problem: Use a nested for loop to instantiate a
Pixel object for each element of the Pixel object array. Use
the corresponding values in the red, green, and blue arrays
as parameters to the Pixel constructor. When the loops are
complete, return the completed array.

Algorithm:
• Create a 2-D array of type Pixel to hold the new Pixel
objects. The dimensions of this array are the same as any
of the color arrays because there is a precondition saying
all the arrays must be the same size.

• Write a for loop that goes through all the rows of the new
array.
• Nested in that for loop, write a for loop that goes
through all the columns of the new array. (These can
be switched. Row-major order is more common, but
column-major order will also work here.)
• Instantiate a new Pixel object, passing the values
in the red, green, and blue arrays at the position
given by the two loop counters, and assign it to the
element of the Pixel array given by the two loop
counters.

• When the loops are complete and every element has
been processed, return the completed Pixel array.

Java Code:

(b) General Problem: Write a flipImage method that takes a 2-
D array of Pixel objects and flips it into a mirror image, either
vertically or horizontally.

Refined Problem: Create a new array to hold the altered
image. Determine whether to flip the image horizontally or
vertically. Write a nested for loop to move all the Pixels to
their mirror-image location in the new array, either
horizontally or vertically. When the loops are complete,
return the new array.

Algorithm:
• Instantiate a 2-D Pixel array that has the same
dimensions as the array passed as a parameter. This
array will hold the altered image.

• Create an if-else statement with one clause for a
horizontal flip and one for a vertical flip.

• If the flip is horizontal, write a nested for loop that goes
through the array in row-major order.
• For each iteration of the loop, an entire row is moved
into its new "flipped" place in the altered array.

• Otherwise, the flip is vertical. Write a nested for loop that
goes through the array in column-major order.
• For each iteration of the loop, an entire column is
moved into its new "flipped" place in the altered array.

• Return the altered array.

Java Code:

Common Errors:
• Watch off-by-one errors. Always think: do I want length or
length - 1? Using variables, like in the alternate solution,
can help you be consistent.

• Be sure you understand the difference between row-
major and column-major order.

• Check your answer with both even and odd numbers of
rows and columns.

• Create a new array to hold the “flipped” version. Do not
overwrite the array that is passed in. This is called
destruction of persistent data and incurs a penalty.

Java Code Alternate Solution:
• This solution only loops halfway through the array. It flips
a pair of lines on each iteration.

This solution also uses a few extra variables to keep
things easier to read. This is not necessary but it reduces
the amount of typing and the chance of an off-by-one
error with length, as opposed to length – 1.

Scoring Guidelines: Pixels

Sample Driver:
There are many ways to write these methods. Maybe yours
is a bit different from our sample solutions and you are not
sure if it works. Here is a sample driver program. Running it
will let you see if your code works, and will help you debug it
if it does not.

Copy PixelDriver and the complete Pixel class into your
IDE. Add your generatePixelArray and flipImage methods
to the bottom of the PixelDriver class.

Scoring Worksheet

This worksheet will help you to approximate your performance on
Practice Exam 1 in terms of an AP score of 1–5.

Part I (Multiple Choice)

Part II (Short Answer)
See the scoring guidelines included with the explanations for each of
the questions and award yourself points based on those guidelines.

Approximate conversion from raw score to AP score

